EVALUATION OF EFFERVESCENT POWDER FORMULATION FROM KENIKIR (Cosmos caudatus kunth) LEAF EXTRACT WITH LACTOSE VARIATIONS

Accepted

Publish

: 30/10/2025

: 31/10/2025

Nawa Al Abil¹, Robby Candra Purnama¹, Vito Zhafran Octonariz¹

E-mail: robby_candra@malahayati.ac.id

ABSTRACT

Herbal plants are plants that can be used as a healing effort, both leaves, stems, and roots. Flavonoid compounds in kenikir leaves have antioxidant properties and have bioactivity as medicine. In addition to flavonoids, kenikir leaves also contain several other metabolite compounds such as essential oils, saponins, tannins, polyphenols, alkaloids and terponoids. This study aims to formulate effervescent powder preparations using kenikir leaf extract with lactose variations and physical tests of effervescent powder preparations. In this study, variations of lactose were used with the aim of sweetness levels and also to see the flow rate properties of effervescent powder preparations. Effervescent is made using three formulations. Effervescent powder is physically evaluated including organoleptic tests, carbonation effect tests, pH tests, water content tests, flow rate tests, angle of repose tests and compressibility tests. The results of the organoleptic test, the effervescent powder has a granular shape, is brown in color, has a distinctive smell of kenikir leaves and has a sweet, sour and distinctive taste of kenikir. The results of the carbonation effect test showed that all formulations had a carbonation effect, pH was in the range of 6-7, water content test was less than 5%, flow rate test was in the range of 4-10 g/s, angle of repose test was less than 40°, and compressibility test was less than 20%. From the research that has been done, kenikir leaf extract can be made into effervescent powder preparations and based on the physical test of effervescent preparations, all formulations are declared to meet the requirements.

Keywords: Kenikir Leaves, Effervescent Powder, Physical Test, Lactose

EVALUASI FORMULASI SEDIAAN SERBUK EFFERVESCENT EKSTRAK DAUN KENIKIR (Cosmos caudatus kunth) DENGAN VARIASI LAKTOSA

Accepted

Publish

: 30/10/2025

: 31/10/2025

Nawa Al Abil¹, Robby Candra Purnama¹, Vito Zhafran Octonariz¹

E-mail: robby_candra@malahayati.ac.id

ABSTRAK

Tanaman herbal merupakan tanaman yang dapat dimanfaatkan sebagai upaya penyembuhan baik daun, batang, maupun akarnya. Senyawa flavonoid yang dimiliki daun kenikir memiliki sifat antioksidan dan mempunyai bioaktifitas sebagai obat. Selain flavonoid, daun kenikir juga mengandung beberapa senyawa metabolit lainnya seperti minyak atsiri, saponin, tanin, polifenol, alkaloid maupun terponoid. Penelitian ini bertujuan untuk memformulasikan sediaan serbuk effervescent menggunakan ekstrak daun kenikir dengan variasi laktosa serta uji fisik sediaan serbuk effervescent. Dalam penelitian ini menggunakan variasi laktosa dengan tujuan sebagai tingkat kemanisan dan juga untuk melihat sifat laju aliran sediaan serbuk effervescent. Effervescent dibuat dengan menggunakan tiga formulasi. Serbuk effervescent dievaluasi fisik meliputi uji organoleptik, uji efek karbonasi, uji pH, uji kadar air, uji laju aliran, uji sudut diam dan uji kompresibilitas. Hasil uji organoleptik, serbuk effervescent memiliki bentuk granul, berwarna coklat, berbau khas daun kenikir dan memiliki rasa manis, masam dan khas kenikir. Hasil uji efek karbonasi menunjukkan hasil bahwa seluruh formulasi terdapat adanya efek karbonasi, pH berada pada rentang 6-7, uji kadar air kurang dari 5%, uji laju aliran berada pada rentang 4-10 g/s, uji sudut diam kurang dari 40°, dan uji kompresibilitas kurang dari 20%. Dari penelitian yang telah dilakukan, ekstrak daun kenikir dapat dibuat sediaan serbuk effervescent dan berdasarkan uji fisik sediaan effervescent semua formulasi dinyatakan memenuhi persyaratan.

Kata kunci: Daun Kenikir, Serbuk Effervescent, Uji Fisik, Laktosa

PENDAHULUAN

Tanaman herbal adalah tanaman yang bisa dimanfaatkan untuk upaya pengobatan baik batang, daun, maupun Sebagian masyarakat menggunakan tanaman herbal untuk dijadikan pengobatan secara tradisional. Selain itu, tanaman herbal juga tidak mempunyai efek samping. Tanaman herbal adalah salah satu pengobatan alternatif yang sudah lama digunakan masyarakat secara oleh tradisional. Dalam keberhasilan penggunaan tanaman herbal sangat dipengaruhi dari pengetahuan masyarakat perihal manfaat pada setiap tanaman yang dapat digunakan sebagai obat, terutama tanaman herbal yang telah diuji secara empiris [20].

Tanaman kenikir memiliki yang nama latin Cosmos caudatus kunth adalah tanaman yang mempunyai bentuk daun membujur dengan tangkai cukup panjang. Cosmos caudatus kunth mengandung senyawa antioksidan dan senyawa bioaktif antara lain quercetin, asam klorogenat dan asam askorbat. Kenikir merupakan tanaman tahunan yang mempunyai nilai sebagai obat diabetes, radang sendi dan darah tinggi dengan daun kenikir dengan kualitas fitomedis tertinggi adalah panen daun pada minggu ke 10. Cosmos caudatus kunth mengandung senyawa antioksidan, senyawa bioaktif seperti asam 1 2 askorbat, quercetin, dan asam klorogenat [18]. Daun kenikir mengandung beberapa senyawa metabolit yaitu flavonoid, saponin, minyak atsiri, tanin, alkaloid, pilofenol maupun [8]. Flavonoid termasuk salah satu senyawa fenolik alam terbesar pada tumbuhan yang menghasilkan antioksidan dan mempunyai kegunaan sebagai obat [17].

: 30/10/2025

: 31/10/2025

Accepted

Publish

Laktosa adalah disakarida terbentuk dari galaktosa dan glukosa. Laktosa sangat diperlukan saat absorbsi kalsium. Galaktosa yang dihasilkan melalui hidrolisis proses laktosa merupakan senyawa memiliki yang krusial dalam biosintesis peran serebrosida, suatu jenis glikolipid yang memiliki peran signifikan dalam mendukung perkembangan serta fungsi fisiologis sistem saraf pusat, khususnya otak [6].

Effervescent adalah bentuk sediaan farmasi yang menghasilkan gelembung gas sebagai hasil reaksi kimia dalam medium cair. Keunggulan dari sediaan ini antara lain adalah memiliki cita rasa yang lebih disukai, karena kandungan karbonat senyawa yang dapat meningkatkan palatabilitas, serta penyajian yang lebih menarik dan menyenangkan bagi pengguna. Selain itu juga, mengandung dosis obat yang sesuai sehingga dapat lebih praktis dan memiliki daya penyimpanan yang lebih lama dibandingkan sediaan yang berbentuk larutan. Effervescent adalah reaksi antara asam dan basa yang dapat karbondioksida. mengasilkan gas

Sediaan ini dibuat dalam ruangan yang memiliki kelembapan rendah, yaitu 10% pada suhu 65-75°F [4].

Serbuk effervescent dipilih karena selain membentuk formulasi sediaan 3 dapat bermanfaat yang kesehatan, effervescent juga memberikan efek segar saat dikonsumsi. Formulasi dibuat dengan berbagai penggunaan laktosa untuk mengukur tingkat kemanisan [10]. Penggunaan laktosa juga selain digunakan untuk mengukur kadar kemanisan juga untuk memastikan laju aliran dari serbuk masih memenuhi syarat, karena laktosa berperan sebagai pembantu proses laju aliran. Serbuk effervescent dapat menjadi alternatif formulasi yang tepat untuk daun kenikir, mengingat kemampuannya dalam menutupi rasa pahit yang terkandung di dalamnya. Dengan demikian, bentuk sediaan ini berpotensi meningkatkan penerimaan produk oleh masyarakat secara lebih luas.

METODELOGI PENELITIAN

Accepted

Publish

Alat dan Bahan

Alat

Spatula, pH meter, neraca analitik, beaker glass, rotary evaporator, oven, corong, gelas ukur, blender.

: 30/10/2025

: 31/10/2025

Bahan

Daun kenikir, etanol 96%, akuades, laktosa, aspartame, asam sitrat, asam tartrat, natrium bikarbonat, perasa buah.

Prosedur Penelitian

Sampel

Penelitian ini menggunakan sampel daun kenikir yang diperoleh melalui metode purposive sampling, yakni teknik pengambilan sampel secara selektif berdasarkan karakteristik atau kriteria tertentu yang dianggap relevan dengan tujuan pe nelitian. Kriteria daun kenikir yang

nelitian. Kriteria daun kenikir yang digunakan adalah daun kenikir yang sudah tua, segar dan tidak rusak.

Tabel 1. Formulasi Serbuk Effervescent Ekstrak Daun Kenikir

Material	Formula (g)			
	I	II	III	
Ekstrak daun kenikir	25	25	25	
Laktosa	19	14	9	
Perasa buah	Qs	Qs	Qs	
Aspartam	1	1	1	
Asam sitrat	9,5	10,45	11,4	
Asam tatrat	13,5	14,85	16,2	
Natrium bikarbonat	27	29,7	32,4	
Total	100	100	100	

Pembuatan Serbuk Effervescent Ekstrak Daun Kenikir (Cosmos caudatus kunth)

Menimbang bahan asam (aspartam, asam sitrat dan asam tartrat). Kemudian bahan yang ditimbang dicampurkan kedalam mortir 1, diaduk sampai Lalu dilakukan tercampur merata. pengovenan selama 30 menit dengan suhu 65°C. Timbang bahan ekstrak kental, natrium bikarbonat laktosa, dan perasa buah. Bahan yang ditimbang semuanya dicampurkan kedalam mortir 2, diaduk hingga tercampur. Selanjutnya oven pada suhu 65°C selama 30 menit. Hasil pada mortir 1 dan 2 dicampurkan menjadi satu, lalu aduk sampai homogen. Serbuk dilakukan pengovenan kembali dengan suhu 50°C selama 30 menit. Serbuk disimpan dengan rapat menggunakan plastik klip [13].

Uji Organoleptik

Uji organoleptik dilakukan dengan memanfaatkan pancaindra untuk mengevaluasi karakteristik fisik serbuk, meliputi aspek warna, bentuk, aroma, dan rasa [13]. Sediaan serbuk yang baik berbentuk serbuk kristal padat dan tidak mengental [10].

Kadar Air (Rusita dkk., 2019)

Ditimbang serbuk *effervescent* sebanyak 1-2 g. Selanjutnya keringkan menggunakan oven dengan suhu 105°C selama 30 menit. Dinginkan serbuk pada eksikator lalu ditimbang. Serbuk dipanaskan kembali selama 30 menit

menggunakan oven, dan dinginkan pada eksikator lalu timbang, lakukan pengulangan hingga memperoleh berat konstan. Syarat kadar air yang baik pada sediaan serbuk *effervescent* adalah <5% (Purnama & Primadiamanti, 2021). Kadar air di hitung dengan rumus

: 30/10/2025

: 31/10/2025

Kadar air =
$$\frac{c - (a - b)}{c} \times 100\%$$

Accepted

Publish

Keterangan:

berikut:

c = berat cawan dan sampel awal (g)

a = berat cawan dan sampel akhir (g)

b = berat cawan kosong (g)

Waktu Alir

Sebanyak 100 g serbuk masukkan ke corong yang sudah ditutup ujungnya. Selanjutnya penutup dibuka dan biarkan granul mengalirkan hingga habis. Serbuk memiliki sifat alir yang baik apabila mempunyai waktu alir tidak lebih dari 10 detik [13]. Syarat laju alir yang baik sediaan serbuk *effervescent* yaitu 4-10 g/s [10].

Uji pH

Sampel serbuk effervescent dilarutkan menggunakan air destilat dengan perbandingan 2:1. Lalu lakukan pengukuran pH. Nilai pH dapat dibaca dengan *display* alat pH [13]. Syarat uji pH yang baik untuk sediaan serbuk *effervescent* adalah mendekati netral yaitu 6 -7 [10].

Sudut Diam

Sebanyak 100 g granul dimasukkan perlahan pada bagian atas corong yang

JURNAL ANALIS FARMASI VOLUME 10 NO 2, HAL. 121-133

bagian bawahnya tertutup. Sehabis serbuk dimasukkan, pada bagian tutup corong dibuka, biarkan serbuk mengalir. Ukur diameter dan tinggi kerucut, untuk mengetahui sudut diamnya. Syarat pengujian sudut diam yang baik untuk sediaan serbuk effervescent adalah < 40° [13]. Sudut diam ditentukan dengan mengukur diameter serta tinggi tumpukan granul yang terbentuk, kemudian dihitung menggunakan rumus:

Tan $a = \frac{h}{r}$

Keterangan:

h : Tinggi tumpukan

a : Sudut diam

r : Jari-jari tumpukan

Accepted

Publish

Uji Kompresibilitas

Timbang 100 g granul lalu masukkan kedalam gelas ukur. Granul dimampatkan sebanyak 200 kali ketukan. Syarat pengujian kompresi bilitas yang baik untuk sediaan serbuk effervescent adalah < 20%. Persen granul dihitung menggunakan persamaan:

: 30/10/2025

: 31/10/2025

$$I = \frac{(V0 - V1)}{V0} \times 100\%$$

Keterangan:

I : % kompresibilitas

V0 : Volume awal

V1 : Volume akhir [2].

HASIL PENELITIAN DAN PEMBAHASAN

Hasil Penelitian

Hasil Perhitungn Rendemen

Tabel 2. Hasil Rendemen

Hasil Rendemen %	Persyaratan	Keteranagan	
15,833	> 10% (Ramdhini, 2023)	MS	

Hasil Uji Efek Karbonasi Pada Sediaan Effervescent

Tabel 3. Hasil Uji Efek Karbonasi Pada Sediaan Effervescent Ekstrak Daun Kenikir.

Sediaan	Efek Karbonasi
Formulasi 1	Ada
Formulasi 2	Ada
Formulasi 3	Ada

Hasil Uji Organoleptik Pada Sediaan Effervescent

Tabel 4. Hasil Uji Organoleptik Pada Sediaan Effervescent Ekstrak Daun Kenikir.

Sediaan	Bentuk	Warna	Bau	Rasa
Formulasi 1	Granul	Coklat	Berbau Khas Kenikir	Manis, Masam, Khas Kenikir
Formulasi 2	Granul	Coklat	Berbau Khas Kenikir	Manis, Sedikit Masam, Khas Kenikir
Formulasi 3	Granul	Coklat	Berbau Khas Kenikir	Sedikit Manis, Masam, Khas kenikir

Hasil Uji pH Pada Sediaan Effervescent

Tabel 5. Hasil Uji pH Pada Sediaan Effervescent Ekstrak Daun Kenikir.

Sediaan	рН	Persyaratan		Keterangan
Formulasi 1	6,9	pH 6-7		MS
Formulasi 2	6,4	(Purnama	&	MS
Farmulasi 2	6,2	Primadiamanti,		MS
Formulasi 3		2021)		MS

Hasil Uji Kadar Air Pada Sediaan Effervescent

Tabel 6. Hasil Uji Kadar Air Pada Sediaan Effervescent Ekstrak Daun Kenikir.

Sediaan	Kadar air (%)	Persyaratan	Keterangan
Formulasi 1	0,9639		MS
Formulasi 2	0,9644	< 5% (BPOM NO. 32 Tahun 2019)	MS
Formulasi 3	0,9650		MS

Hasil Uji Laju Aliran Pada Sediaan Effervescent

Tabel 7. Hasil Uji Laju Aliran Pada Sediaan Effervescent Ekstrak Daun Kenikir.

Sediaan	Laju Aliran (g/s)	Persyaratan		Keterangan	
Formulasi 1	6,4	4-10 g/s		MS	
Formulasi 2	5,9	(Purnama	&	MS	
Farmanda ai 2	F 4	Primadiamanti,		MC	
Formulasi 3	5,4	2021)		MS	

Hasil Uji Sudut Diam Pada Sediaan Effervescent

Tabel 8. Hasil Uji Sudut Diam Pada Sediaan Effervescent Ekstrak Daun Kenikir.

Sediaan	Sudut Diam (°)	Persyaratan	Keterangan
Formulasi 1	26	<40°	MS
Formulasi 2	26,5		MS
Formulasi 3	27,3	(Santosa, 2017)	MS

Accepted

Publish

: 30/10/2025

: 31/10/2025

Hasil Uji Kompresibilitas Sediaan Effervescent

Tabel 9. Hasil Uji Kompresibilitas Pada Sediaan Effervescent Ekstrak Daun Kenikir.

Sediaan	Kompresibilitas (%)	Persyaratan	Keterangan
Formulasi 1	6,1	< 20%	MS
Formulasi 2	6,9	(Akbar &	MS
Formulasi 3	7,5	Febriani, 2019)	MS

Pembahasan

Pada penelitian ini dilakukan uji fisik pada sediaan *effervescent* ekstrak daun kenikir. *Effervescent* merupakan bentuk sediaan produk pangan fungsional yang diproses dengan campuran tertentu sehingga menghasilkan gas CO₂ ketika bereaksi dengan air. Formulasi granul *effervescent* dibuat dengan berbagai jumlah variasi asam dan basa yang berfungsi sebagai gas *generating agent* (penghasil gas/buih) [5].

Rendemen adalah perbandingan berat kering produk yang dihasilkan dengan berat bahan baku [14]. Pada perhitungan rendemen di dapatkan hasil rendemen sebesar 15,833%. Syarat umum rendemen suatu bahan baku adalah > 10%, oleh karena itu simplisia dan ekstrak daun kenikir dinyatakan telah memenuhi syarat. Dalam hal ini,

terdapat hubungan antara rendemen dengan senyawa aktif suatu bahan baku apabila jumlah rendemen sehingga semakin tinggi maka jumlah senyawa aktif yang terkandung dalam sampel juga semakin tinggi [11]. Semakin lama pengekstrakan maka waktu akan semakin banyak total zat aktif yang terlarut. Diketahui pengekstrakan dengan estimasi waktu yang lama pelarut menyebabkan masuk merusak kedalam dinding sel sehingga senyawa pada daun kenikir dapat keluar terlarut. Peningkatan dan lamanya waktu ekstraksi maka pelarut akan semakin menembus dinding sel sehingga kerusakan jaringan bahan akan semakin optimal dan senyawa pada daun kenikir akan terlarut lebih banyak [3].

Dalam penelitian ini menggunakan variasi laktosa dengan tujuan sebagai tingkat kemanisan dan juga untuk melihat sifat laju aliran sediaan serbuk effervescent. Bahan pengisi sekaligus pemanis yang digunakan dalam penelitian ini adalah kombinasi laktosa dan aspartam. Pada formulasi sediaan effervescent kedua bahan ini digunakan karena memiliki rasa yang manis dan mudah larut di dalam air sehingga bila dalam formulasi serbuk digunakan effervescent ekstrak daun kenikir diharapakan dapat menutupi rasa pahit dapat dari daun kenikir dan juga menghasilkan serbuk effervescent yang memenuhi syarat kualitas serbuk yang baik. Formulasi dengan laktosa memberikan keuntungan karena laju pelepasan obatnya yang baik, meningkatkan sifat alir granul dan meningkatkan kekerasan tablet [7]. Laktosa mempunyai densitas 1,545 g/cm³ dan bobot molekul 360,31 g/mol. Densitas yang lebih besar akan memiliki berat molekul yang lebih besar sehingga akan semakin mudah mengalir karena gaya gravitasi semakin besar. Semakin tinggi densitas massa aranul menyebabkan waktu alirnya semakin cepat. Setelah dilakukannya uji laju aliran pada sediaan serbuk effervescent variasi laktosa dengan didapatkan bahwa formulasi dengan laktosa yang lebih bayak memiliki laju aliran yang lebih baik.

Selanjutnya dilakukan uji efek karbonasi, berdasarkan hasil pengamatan, pada tabel 2 menunjukkan hasil bahwa seluruh formulasi terdapat Accepted : 30/10/2025 Publish : 31/10/2025

adanya efek karbonasi. Efek sparkle ini terjadi karena adanya reaksi antara senyawa asam sitrat, asam tartarat, dan natrium bikarbonat saat dilarutkan dengan air akan menghasilkan karbondioksida (CO₂). Rasa seperti soda merupakan ciri khas dari serbuk effervescent yang dilarutkan dalam air karena adanya asam bereaksi dengan untuk membentuk karbonat karbondioksida [19].

Selanjutnya dilakukan uji organoleptik pada sediaaan *effervescent* dengan melakukan pengamatan bentuk, warna, bau dan rasa. Penilaian dilakukan dengan menggunakan panca indera. Berdasarkan pengamatan, pada tabel 3 menunjukan hasil uji organoleptik yaitu sediaan effervescent berbentuk serbuk, berwarna coklat, berbau khas kenikir. Penilaian rasa, pada F1 memiliki rasa manis, masam dan khas kenikir. Pada F2 memiliki rasa manis, sedikit masam dan khas kenikir. Pada F3 memiliki rasa sedikit manis, masam dan khas kenikir.

Uji pH dilakukan untuk mengetahui nilai pH yang terkandung dalam sampel. Untuk uji pH didapatkan hasil untuk F1 yaitu 6,9, untuk F2 didapatkan 6,4, dan unutk F3 di dapatkan 6,2. Ketiga memenuhi formulasi syarat karena syarat untuk pH dari serbuk effervescent yaitu 6-7 [10]. Uji pH perlu dilakukan karena jika larutan effervescent yang terbentuk terlalu asam dapat mengiritasi lambung, sedangkan jika terlalu basa menimbulkan rasa pahit dan tidak enak [4]. Penurunan nilai pH disebabkan oleh

meningkatnya bahan asam (asam sitrat dan asam tartrat) yang digunakan untuk setiap formulasi.

Kemudian dilakukan uji kadar air untuk sampel. Hasil pengujian kadar air untuk F1 didapatkan 0,9639%, untuk kadar air pada F2 didapatkan 0,9644%, untuk kadar air pada F3 didapatkan 0,9650%, hasil dari ketiga formulasi memenuhi syarat, karena menururt peraturan BPOM No. 32 Tahun 2019 kadar air untuk serbuk syarat effervescent yaitu <5%. Pengujian kadar air pada granul ini bertujuan untuk mengetahui kandungan air pada granul karena air dapat mempengaruhi lamanya penyimpanan granul, semakin tinggi nilai kadar air semakin mudah pula sediaan ditumbuhi mikroba selama penyimpanan [12].

Selanjutnya dilakukan uji laju aliran, tujuannya untuk menentukan waktu alir yang baik karena waktu alir mempengaruhi kesesragaman bobot dan ukuran pada serbuk effervescent. Hal ini juga menentukan variasi laktosa yang untuk setiap digunakan formulasi, karena laktosa juga berperan dalam membantu proses laju aliran [16]. Untuk hasil yang didapatkan pada uji waktu aliran untuk F1 yaitu 6,4 g/s, untuk F2 didapatkan 5,9 g/s, dan unutk F3 didapatkan 5,4 g/s. Hasil yang didapatkan untuk semua formulasi memenuhi syarat karena syarat laju aliran baik pada serbuk yang effervescent adalah 4-10 g/s [10].

Accepted : 30/10/2025 Publish : 31/10/2025

Selanjutnya untuk uji sudut diam didapatkan hasil untuk F1 yaitu 26°, untuk F2 didapatkan hasil 26,5° dan untuk F3 didapatkan 27,3°. Hasil yang dari formulasi didapatkan ketiga memenuhi syarat karena syarat sudut diam yang baik yaitu <40% [13]. Tujuan dari uji sudut diam untuk mengukur kemampuan alir granul karena hubungannya dengan kohesi antar partikel. Penurunan sudut diam berpengaruh pada uji sifat alir, karena semakin besar sudut diam maka waktu alir yang dihasilkan semakin buruk [9].

Untuk pengujian kompresibilitas didapatkan hasil untuk F1 adalah 6,1 %, untuk F2 didapatkan 6,9 % dan untuk F3 didapatkan 7,5 %. Uji kompresibilitas bertujuan untuk menentukan apakah bahan dapat membentuk masa yang stabil dan kompak bila diberikan tekanan. kompresibilitas yang Uji memenuhi persyaratan menunjukkan persen indeks kompresibilitas dari seluruh formula yaitu kurang dari 20%. Nilai persentase kompresibilitas dipengaruhi oleh ukuran granul dan bentuk granul [2].

KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan hasil yang diperoleh dan telah dilakukan pengujian-pengujian dapat disimpulkan bahwa:

 Sampel ekstrak daun kenikir (Cosmos caudatus kunth) dapat dibuat sediaan serbuk effervescent ditandai dengan adanya efek JURNAL ANALIS FARMASI VOLUME 10 NO 2, HAL. 121-133

karbonasi saat dicampurkan dengan air.

- Dari hasil uji fisik yang dilakukan semua sampel F1, F2 dan F3 memenuhi persyaratan dan tidak ada yang melebihi kadar persyaratan.
- Dari ketiga formulasi, F1 adalah formulasi yang paling baik karena ditinjau dari variasi laktosa yang mempengaruhi laju aliran, hasil yang didapatkan F1 adalah yang paling mudah mengalir.

Saran

- Pengurangan ekstrak sebaiknya dilakukan untuk mempermudah dalam pembuatan serbuk effervescent dan untuk meminimalisir penggumpalan pada serbuk.
- Perlu dilakukan penelitian lebih lanjut untnuk melihat aktivitas antikoksidan yang ada dalam sediaan serbuk effervescent ekstrak daun kenikir (Cosmos caudatus kunth).

DAFTAR PUSTAKA

- [BPOM] Badan Pengawasan Obat dan Makanan (2019). Persyaratan dan Keamanan Dan Mutu Obat. Jakarta: Badan POM RI.
- Akbar, A. K., & Febriani, A. K. 2019. Uji kompresibilitas granul pati singkong dengan metode granulasi basah. Jurnal Ilmiah JOPHUS: Journal

Accepted : 30/10/2025 Publish : 31/10/2025

Of Pharmacy UMUS, Vol. 1. No 1. Hal 7-11.

- Amaliah, A., Sobari, E., & Mukminah,
 N. 2019. Rendemen Dan Karakteristik
 Fisik Ekstrak Oleoresin Daun Sirih
 Hijau (Piper betle L.) Dengan Pelarut
 Heksan. In Prosiding Industrial
 Research Workshop and National
 Seminar. Vol. 10, No. 1. Hal 273-278.
- Anova, I. T., Wilsa, H., & Kamsina, 2016. Formulasi perbandingan asam basa serbuk effervescent Dari coklat bubuk. *Jurnal Litbang Industri Vol. 6*, No. 2. Hal 99-106.
- Forestryana, D., Hestiarini, Y., & Putri,
 A. N. 2020. Formulasi Granul Effervescent Ekstrak Etanol 90% Buah Labu Air (*Lagenaria siceraria*) Sebagai Antioksidan dengan Variasi Gas Generating Agent. *Jurnal Ilmiah Ibnu Sina, Vol. 5 No. 2.* Hal 220-229.
- 6. Intanwati, S. (2012). Intoleransi Laktosa. *Thesis: Program Pasca* Sarjna, Fakultas Kedokteran.
- Kurnianingtyas, D. A. (2013). Optimasi
 Formula Tablet Hisap Ekstrak Buah
 Mahkota Dewa (*Phaleria macrocarpa*[Scheff.] Boerl) Dengan Campuran
 Pengisi Xilitol-Laktosa Dengan Metode
 Simplex Lattice Design. Doctoral
 dissertation, Universitas
 Muhammadiyah Surakarta.

- Masitah, M., Pribadi, T., Pratama, M.

 Harrist, R. F., Sari, P. A., Dianita, F.,
 Setiawan, V. K. 2023. Analisis
 Kandungan Metabolit Sekunder Pada
 Daun Kenikir (*Cosmos caudatus kunth*) Dengan Pelarut Metanol,
 Etanol, Dan Etil Asetat. BIOEDUKASI:

 Jurnal Pendidikan Biologi, Vol. 14, No.
 Hal 266-272.
- Prisiska, F., Kriana, E., Rahmatullah, R.,
 Rahman, S. (2023). Formulasi Teblet
 Dari Enzim Buah Pepaya. Tugas Akhir:
 Program Studi Farmasi, Fakultas
 Farmasi dan Sains, Universitas
 Muhammadiyah Prof. Dr. Hamka.
- 10. Purnama, R. C., & Primadiamanti, A. 2021. Phytochemical Screening, Spectrum Profile of Functional Groups, and Effervescent Formulation of Kepok Banana Peels Stem Extract. ALKIMIA: Jurnal Ilmu Kimia dan Terapan, Vol. 4, No. 2. Hal 66-72.
- 11. Ramdhini, R. N. 2023. Standardisasi Mutu Simplisia Dan Ekstrak Etanol Bunga Telang (Clitoria ternatea L.). Jurnal Kesehatan: Jurnal Ilmiah Multi Sciences, Vol.13. No. 1. Hal 32-38.
- 12. Rusdiah, R., Nurhayati, G. S., & Stiani,S. N. 2021. Formulasi dan evaluasi sediaan tablet dari ekstrak etanol daun katuk (Sauropus androgynus

Publish : 31/10/2025

Merr.) dengan menggunakan metode

Accepted

: 30/10/2025

- Merr.) dengan menggunakan metode granulasi basah. *Jurnal Medika & Sains [J-MedSains], Vol. 1. No. 1.* Hal. 45-65.
- 13. Rusita, Y. D., & Rakhmayanti, R. D.
 2019. Formulasi sediaan serbuk
 effervescent ekstrak daun kelor
 (Moringa oleifera L). In Prosiding
 Seminar Nasional Unimus, Vol. 2. Hal.
 118-125.
- 14. Santosa, L. 2017. Formulasi granul effervescent sari buah jambu mete (annacardium ocidentale l). Pharmacon, Vol. 6, No. 3. Hal 56-64.
- 15. Senduk, T. W., Montolalu, L. A., & Dotulong, V. (2022). The rendement of boiled water extract of mature leaves of mangrove Sonneratia alba. *Jurnal Perikanan Dan Kelautan Tropis*, Vol. 11. No. 1. Hal 9-15.
- 16. Sulistiani, N. D., Anam, C., & Yudhistira, B. 2018. Karakteristik Tablet *Effervescent* Labu Siam (Sechium edule Sw) dan Ekstrak Secang (Caesalpinia sappan L) dengan Filler Laktosa-Manitol. Jurnal teknologi hasil pertanian, Vol. 11, No. 2. Hal 99-109.
- 17. Wahyuni, W. T., Pitria, L. K. D., & Rahmat, A. 2018. Analisis kadar flavonoid dan antioksidan ekstrak daun kenikir (Cosmos caudatus),

JURNAL ANALIS FARMASI VOLUME 10 NO 2, HAL. 121-133

rumput mutiara (*Oldenlandia* corymbosa), dan sirsak (*Annona* muricata) dengan teknik spektrometri. *Analit: Analytical and Environmental Chemistry*, *Vol. 3, No. 01*. Hal 38-46.

Accepted

Publish

: 30/10/2025

: 31/10/2025

- 18. Widiya, M., Lokaria, E., & Nopiyanti, N. 2022. Pelatihan Dan Uji Organoleptik Tehcita Rasa Wedang Kenikir (Cosmos caudatus) Pada Pkkdidesajajaranbaru. Bakti Nusantara Linggau: Jurnal Pengabdian Kepada Masyarakat, Vol. 2, No. 2. Hal 35-46.
- 19. Wulansari, D., Rahmi, S. L., Fiardilla, F., & Ningsih, S. (2023). Uji Organoleptik Minuman Serbuk *Effervescent* Daun Pulai (Alstonia scholaris (L.) R. BR.). Jurnal Pengembangan Agroindustri Terapan, Vol. 2 NO. 2. Hal 20-29.
- 20. Yulianto, S. 2017. Penggunaan Tanaman Herbal Untuk Kesehatan. Jurnal Kebidanan Dan Kesehatan Tradisional, Vol. 2, No. 1. Hal 1-7.