Mini Review: Hubungan Mikrobiom Usus Dengan Kesehatan Manusia

Murni Fitria, Anggi Saputra, Yeni Variyana

Sari


Mikrobioma usus manusia, sebuah ekosistem kompleks yang terdiri dari jutaan mikroorganisme, telah menjadi fokus penelitian yang signifikan dalam konteks kesehatan manusia. Studi-studi terbaru menunjukkan bahwa komposisi mikrobioma usus dapat mempengaruhi kesehatan secara keseluruhan, termasuk dalam konteks kondisi neuropsikiatrik seperti autisme dan depresi, serta penyakit kardiovaskular. Hubungan antara mikrobioma usus dengan autisme, misalnya, menunjukkan adanya perbedaan dalam kelimpahan bakteri tertentu pada anak-anak dengan autisme dibandingkan dengan yang sehat. Selain itu, gangguan keseimbangan mikroorganisme dalam usus atau disbiosis telah dikaitkan dengan berbagai masalah kesehatan, termasuk penyakit jantung. Metode analisis berupa Next Generation Sequencing (NGS), telah memungkinkan peneliti untuk memahami komposisi mikrobioma usus dan interaksinya dengan kesehatan manusia. Semenatar itu, penggunaan probiotik dan prebiotik berpotensi menangani masalah Kesehatan dengan cara memperbaiki keseimbangan mikrobioma usus. Penelitian lebih lanjut diperlukan untuk memahami lebih dalam hubungan antara mikrobioma usus dan kesehatan manusia, serta potensi terapi probiotik dan prebiotik dalam mengatasi masalah kesehatan yang berkaitan dengan ketidakseimbangan mikrobioma usus.

 


Kata Kunci


Kata kunci: mikrobiom usus, autisme, depresi, penyakit kardiovaskular

Teks Lengkap:

PDF

Referensi


Ahmad, A. F., Dwivedi, G., O’Gara, F., Caparros-Martin, J., & Ward, N. C. (2019). The gut microbiome and cardiovascular disease: Current knowledge and clinical potential. American Journal of Physiology-Heart and Circulatory Physiology, 317(5), H923–H938. https://doi.org/10.1152/ajpheart.00376.2019

Barrea, L., Annunziata, G., Muscogiuri, G., Di Somma, C., Laudisio, D., Maisto, M., de Alteriis, G., Tenore, G. C., Colao, A., & Savastano, S. (2018). Trimethylamine-N-oxide (TMAO) as Novel Potential Biomarker of Early Predictors of Metabolic Syndrome. Nutrients, 10(12), 1971. https://doi.org/10.3390/nu10121971

Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G., Bienenstock, J., & Cryan, J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16050–16055. https://doi.org/10.1073/pnas.1102999108

Brown, T. A. (2023). Genomes 5. CRC Press.

Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017a). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological Psychiatry, 82(7), 472–487. https://doi.org/10.1016/j.biopsych.2016.12.031

Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017b). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological Psychiatry, 82(7), 472–487. https://doi.org/10.1016/j.biopsych.2016.12.031

Cantero, M. A., Guedes, M. R. A., Fernandes, R., & Lollo, P. C. B. (2022). Trimethylamine N-oxide reduction is related to probiotic strain specificity: A systematic review. Nutrition Research, 104, 29–35. https://doi.org/10.1016/j.nutres.2022.04.001

Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28(2), 203–209.

Clark-Taylor, T., & Clark-Taylor, B. E. (2004). Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial β-oxidation by long chain acyl-CoA dehydrogenase. Medical Hypotheses, 62(6), 970–975. https://doi.org/10.1016/j.mehy.2004.01.011

Collins, S. M., & Bercik, P. (2009). The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology, 136(6), 2003–2014. https://doi.org/10.1053/j.gastro.2009.01.075

Davila, A.-M., Blachier, F., Gotteland, M., Andriamihaja, M., Benetti, P.-H., Sanz, Y., & Tomé, D. (2013). Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacological Research, 68(1), 95–107. https://doi.org/10.1016/j.phrs.2012.11.005

Finegold, S. M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M.-L., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E. M., Collins, M. D., Lawson, P. A., Summanen, P., Baysallar, M., Tomzynski, T. J., Read, E., Johnson, E., Rolfe, R., Nasir, P., … Kaul, A. (2002). Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 35(Suppl 1), S6–S16. https://doi.org/10.1086/341914

Forsythe, P., Bienenstock, J., & Kunze, W. A. (2014). Vagal pathways for microbiome-brain-gut axis communication. Advances in Experimental Medicine and Biology, 817, 115–133. https://doi.org/10.1007/978-1-4939-0897-4_5

Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut-brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312. https://doi.org/10.1016/j.tins.2013.01.005

Frank, D. N., & Pace, N. R. (2008). Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology, 24(1), 4–10. https://doi.org/10.1097/MOG.0b013e3282f2b0e8

Grochowska, M., Wojnar, M., & Radkowski, M. (2018). The gut microbiota in neuropsychiatric disorders. Acta Neurobiologiae Experimentalis, 78(2), 69–81.

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66

Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., Li, L., & Ruan, B. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior, and Immunity, 48, 186–194. https://doi.org/10.1016/j.bbi.2015.03.016

Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P. J., Beers, S., Scott, K., Moloney, G., Hoban, A. E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J. F., & Dinan, T. G. (2016). Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019

Labus, J. S., Hollister, E. B., Jacobs, J., Kirbach, K., Oezguen, N., Gupta, A., Acosta, J., Luna, R. A., Aagaard, K., Versalovic, J., Savidge, T., Hsiao, E., Tillisch, K., & Mayer, E. A. (2017). Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome, 5(1), 49. https://doi.org/10.1186/s40168-017-0260-z

Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y., & Jin, F. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience, 310, 561–577. https://doi.org/10.1016/j.neuroscience.2015.09.033

MacFabe, D. F., Cain, N. E., Boon, F., Ossenkopp, K.-P., & Cain, D. P. (2011). Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behavioural Brain Research, 217(1), 47–54. https://doi.org/10.1016/j.bbr.2010.10.005

Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linløkken, A., Wilson, R., & Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterology and Motility, 26(8), 1155–1162. https://doi.org/10.1111/nmo.12378

Papageorgiou, N. (2016). Cardiovascular Diseases: Genetic Susceptibility, Environmental Factors and their Interaction. Academic Press.

Parracho, H. M., Bingham, M. O., Gibson, G. R., & McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 54(Pt 10), 987–991. https://doi.org/10.1099/jmm.0.46101-0

Peng, J., Xiao, X., Hu, M., & Zhang, X. (2018). Interaction between gut microbiome and cardiovascular disease. Life Sciences, 214, 153–157. https://doi.org/10.1016/j.lfs.2018.10.063

Petschow, B., Doré, J., Hibberd, P., Dinan, T., Reid, G., Blaser, M., Cani, P. D., Degnan, F. H., Foster, J., Gibson, G., Hutton, J., Klaenhammer, T. R., Ley, R., Nieuwdorp, M., Pot, B., Relman, D., Serazin, A., & Sanders, M. E. (2013). Probiotics, prebiotics, and the host microbiome: The science of translation. Annals of the New York Academy of Sciences, 1306(1), 1–17. https://doi.org/10.1111/nyas.12303

Pulikkan, J., Maji, A., Dhakan, D. B., Saxena, R., Mohan, B., Anto, M. M., Agarwal, N., Grace, T., & Sharma, V. K. (2018). Gut Microbial Dysbiosis in Indian Children with Autism Spectrum Disorders. Microbial Ecology, 76(4), 1102–1114. https://doi.org/10.1007/s00248-018-1176-2

Pulikkan, J., Mazumder, A., & Grace, T. (2019). Role of the Gut Microbiome in Autism Spectrum Disorders. In P. C. Guest (Ed.), Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders (Vol. 1118, pp. 253–269). Springer International Publishing. https://doi.org/10.1007/978-3-030-05542-4_13

Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9), Article 9. https://doi.org/10.1038/nbt.3935

Rath, S., Heidrich, B., Pieper, D. H., & Vital, M. (2017). Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome, 5(1), 54. https://doi.org/10.1186/s40168-017-0271-9

Rogers, G. B., Keating, D. J., Young, R. L., Wong, M.-L., Licinio, J., & Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Molecular Psychiatry, 21(6), 738–748. https://doi.org/10.1038/mp.2016.50

Romano, K. A., Vivas, E. I., Amador-Noguez, D., & Rey, F. E. (2015). Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine- N -Oxide. mBio, 6(2), e02481-14. https://doi.org/10.1128/mBio.02481-14

Rong, H., Xie, X., Zhao, J., Lai, W., Wang, M., Xu, D., Liu, Y., Guo, Y., Xu, S., Deng, W., Yang, Q., Xiao, L., Zhang, Y., He, F., Wang, S., & Liu, T. (2019). Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. Journal of Psychiatric Research, 113, 90–99. https://doi.org/10.1016/j.jpsychires.2019.03.017

Sanders, M. E., Heimbach, J. T., Pot, B., Tancredi, D. J., Lenoir-Wijnkoop, I., Lähteenmäki-Uutela, A., Gueimonde, M., & Bañares, S. (2011). Health claims substantiation for probiotic and prebiotic products. Gut Microbes, 2(3), 127–133. https://doi.org/10.4161/gmic.2.3.16174

Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics—Approaching a definition. The American Journal of Clinical Nutrition, 73(2 Suppl), 361S-364S. https://doi.org/10.1093/ajcn/73.2.361s

Sender, R., Fuchs, S., & Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14(8), e1002533. https://doi.org/10.1371/journal.pbio.1002533

Settanni, C. R., Bibbò, S., Ianiro, G., Rinninella, E., Cintoni, M., Mele, M. C., Cammarota, G., & Gasbarrini, A. (2021). Gastrointestinal involvement of autism spectrum disorder: Focus on gut microbiota. Expert Review of Gastroenterology and Hepatology, 15(6), 599–622. https://doi.org/10.1080/17474124.2021.1869938

Shaw, W. (2010). Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. In the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutritional Neuroscience, 13(3), 135–143. https://doi.org/10.1179/147683010X12611460763968

Shultz, S. R., MacFabe, D. F., Ossenkopp, K.-P., Scratch, S., Whelan, J., Taylor, R., & Cain, D. P. (2008). Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: Implications for an animal model of autism. Neuropharmacology, 54(6), 901–911. https://doi.org/10.1016/j.neuropharm.2008.01.013

Smith, M. M., & Melrose, J. (2022). Xylan Prebiotics and the Gut Microbiome Promote Health and Wellbeing: Potential Novel Roles for Pentosan Polysulfate. Pharmaceuticals, 15(9), Article 9. https://doi.org/10.3390/ph15091151

Soccol, C. R., Medeiros, A. B. P., & Yamaguishi, C. T. (2010). The Potential of Probiotics: A Review.

Song, Y., Liu, C., & Finegold, S. M. (2004). Real-Time PCR Quantitation of Clostridia in Feces of Autistic Children. Applied and Environmental Microbiology, 70(11), 6459–6465. https://doi.org/10.1128/AEM.70.11.6459-6465.2004

Sorboni, S. G., Moghaddam, H. S., Jafarzadeh-Esfehani, R., & Soleimanpour, S. (2022). A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 35(1), e0033820. https://doi.org/10.1128/CMR.00338-20

Tang, W. H. W., Bäckhed, F., Landmesser, U., & Hazen, S. L. (2019). Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73(16), 2089–2105. https://doi.org/10.1016/j.jacc.2019.03.024

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., Feldstein, A. E., Britt, E. B., Fu, X., Chung, Y.-M., Wu, Y., Schauer, P., Smith, J. D., Allayee, H., Tang, W. H. W., DiDonato, J. A., Lusis, A. J., & Hazen, S. L. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472(7341), 57–63. https://doi.org/10.1038/nature09922

Wensel, C. R., Pluznick, J. L., Salzberg, S. L., & Sears, C. L. (2022, April 1). Next-generation sequencing: Insights to advance clinical investigations of the microbiome. American Society for Clinical Investigation. https://doi.org/10.1172/JCI154944

Zabetakis, I., Lordan, R., & Tsoupras, A. (2019). The Impact of Nutrition and Statins on Cardiovascular Diseases. Academic Press.

Zhang, M., Zhou, Q., Dorfman, R. G., Huang, X., Fan, T., Zhang, H., Zhang, J., & Yu, C. (2016). Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterology, 16(1), 84. https://doi.org/10.1186/s12876-016-0500-x

Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., Zeng, L., Chen, J., Fan, S., Du, X., Zhang, X., Yang, D., Yang, Y., Meng, H., Li, W.,




DOI: https://doi.org/10.33024/jfm.v7i2.14348

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##