EFEK Curcuma longa DAN Garcinia mangostana TERHADAP EKSPRESI GEN PPARα HIPOKAMPUS TIKUS WISTAR DENGAN DIET TINGGI LEMAK

Harry Tribowo Hadi, Ade Kurnia Surawijaya, Irna Permanasari Gani, Diana Krisanti Jasaputra, Julia Windi Gunadi, Karen Regina Wijayanto

Sari


Abstrak: Efek Curcuma longa dan Garcinia mangostana Terhadap Ekspresi Gen PPARα Hipokampus Tikus Wistar dengan Diet Tinggi Lemak.  Berbagai masalah kesehatan seringkali berhubungan dengan diet tinggi lemak, tak terkecuali gangguan memori pada otak, khususnya hipokampus, misalnya penyakit Alzheimer. PPARα merupakan reseptor nuklear yang tersebar di berbagai organ tubuh salah satunya di hipokampus. PPARα berperan mengatur metabolisme dan transportasi lemak serta mengontrol plastisitas sinaptik yang meregulasi penyimpanan memori dan kemampuan belajar. Mengonsumsi herbal sebagai pengobatan tradisional, misalnya kunyit dan manggis telah menjadi kebiasaan turun temurun penduduk Indonesia. Kunyit (Curcuma longa) dan manggis (Garcinia mangostana) merupakan tanaman herbal khas Asia Tenggara yang secara umum digunakan sebagai antioksidan dan antikolesterol. Mengetahui pengaruh ekstrak etanol kunyit dan kulit manggis terhadap ekspresi gen PPARα di hipokampus. Penelitian ini menggunakan 5 kelompok yaitu kontrol negatif, kontrol positif, kunyit, manggis, dan fenofibrat. Metode yang digunakan untuk pengujian ini dengan PCR konvensional dengan analisis data menggunakan uji One Way Anova. Ekstrak etanol kunyit dan kulit manggis memiliki pengaruh yang signifikan terhadap peningkatan ekspresi gen PPARα di hipokampus tikus wistar yang diberikan diet tinggi lemak. Oleh karena itu, penulis berasumsi bahwa diet tinggi lemak dan bahan herbal khususnya kurkumin (Curcuma longa L.) dan manggis (Garcinia mangostana L.) dapat mempengaruhi ekspresi gen PPARα pada hippocampus pada kelompok perlakuan dibandingkan dengan kontrol. Diet tinggi lemak mengubah ekspresi gen PPARα di hipokampus. Ekstrak etanol kunyit dan kulit manggis meningkatkan ekspresi gen PPARα di hipokampus.


Kata Kunci


Diet Tinggi Lemak, Hipokampus, Kunyit, Manggis, Pparα

Teks Lengkap:

PDF

Referensi


Bougarne, N., Weyers, B., Desmet, S. J., Deckers, J., Ray, D. W., Staels, B., & De Bosscher, K. (2018). Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews, 39(5), 760–802. https://doi.org/10.1210/er.2018-00064

Christofides, A., Konstantinidou, E., Jani, C., & Boussiotis, V. A. (2021). The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism, 114, 154338. https://doi.org/https://doi.org/10.1016/j.metabol.2020.154338

Cordner, Z. A., & Tamashiro, K. L. K. (2015). Effects of high-fat diet exposure on learning & memory. Physiology & Behavior, 152(Pt B), 363–371. https://doi.org/10.1016/j.physbeh.2015.06.008

Dai, J., Li, Y., Kametani, F., Cui, X., Igarashi, Y., Huo, J., Miyahara, H., Mori, M., & Higuchi, K. (2021). Curcumin promotes AApoAII amyloidosis and peroxisome proliferation in mice by activating the PPARα signaling pathway. ELife, 10. https://doi.org/10.7554/eLife.63538

Do, H. T. T., & Cho, J. (2020). Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer’s Disease,

Parkinson’s Disease, and Depression with Pharmacokinetic and Safety Profiles. International Journal of Molecular Sciences, 21(17). https://doi.org/10.3390/ijms21176211

Grygiel-Górniak, B. (2014). Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutrition Journal, 13, 17. https://doi.org/10.1186/1475-2891-13-17

Kannan, R. G., Abhilash, M. B., Dinesh, K., Syam, D. S., Balu, M., Sibi, I., & Krishnakumar, I. M. (2022). Brain regional pharmacokinetics following the oral administration of curcumagalactomannosides and its relation to cognitive function. Nutritional Neuroscience, 25(9), 1928–1939. https://doi.org/10.1080/1028415X.2021.1913951

Kim, J. H., Kim, O.-K., Yoon, H.-G., Park, J., You, Y., Kim, K., Lee, Y.-H., Choi, K.-C., Lee, J., & Jun, W. (2016). Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food & Nutrition Research, 60, 30428. https://doi.org/10.3402/fnr.v60.30428

Krishna, S., Keralapurath, M. M., Lin, Z., Wagner, J. J., de La Serre, C. B., Harn, D. A., & Filipov, N. M. (2015). Neurochemical and electrophysiological deficits in the ventral hippocampus and selective behavioral alterations caused by high-fat diet in female C57BL/6 mice. Neuroscience, 297, 170–181. https://doi.org/10.1016/j.neuroscience.2015.03.068

Kumar, D., Jacob, D., PS, S., Maliakkal, A., NM, J., Kuttan, R., Maliakel, B., Konda, V., & IM, K. (2016). Enhanced bioavailability and relative distribution of free (unconjugated) curcuminoids following the oral administration of a food-grade formulation with fenugreek dietary fibre: A randomised double-blind crossover study. Journal of

Functional Foods, 22, 578–587.

https://doi.org/https://doi.org/10.1016/j.jff.2016.01.039

Kusmayadi, A., Bachtiar, K. R., & Prayitno, C. H. (2019). The effects of mangosteen peel (Garcinia mangostana L.) and Turmeric (Curcuma domestica Val) flour dietary supplementation on the growth performance, lipid profile, and abdominal fat content in Cihateup ducks. Veterinary World, 12(3), 402–408.

https://doi.org/10.14202/vetworld.2019.402-408

Labban, R. S. M., Alfawaz, H. A., Almnaizel, A. T., Al-Muammar, M. N.,

Bhat, R. S., & El-Ansary, A. (2021). Garcinia mangostana extract and curcumin ameliorate oxidative stress, dyslipidemia, and hyperglycemia in high fat diet-induced obese Wistar albino rats. Scientific Reports, 11(1), 7278. https://doi.org/10.1038/s41598-021-86545-z

Luo, Y., He, Q., Kuang, G., Jiang, Q., & Yang, J. (2014). PPAR-alpha and PPAR-beta expression changes in the hippocampus of rats undergoing global cerebral ischemia/reperfusion due to PPAR-gamma status. Behavioral and Brain Functions : BBF, 10(1), 21. https://doi.org/10.1186/1744-9081-10-21

Mandal, M., Jaiswal, P., & Mishra, A. (2020). Role of curcumin and its nanoformulations in neurotherapeutics: A comprehensive review. Journal of Biochemical and Molecular Toxicology, 34(6), e22478. https://doi.org/10.1002/jbt.22478

Matsuura, N., Gamo, K., Miyachi, H., Iinuma, M., Kawada, T., Takahashi, N., Akao, Y., & Tosa, H. (2013). γ-Mangostin from Garcinia mangostana pericarps as a dual agonist that activates Both PPARα and PPARδ. Bioscience, Biotechnology, and Biochemistry, 77(12), 2430–2435. https://doi.org/10.1271/bbb.130541

Ovalle-Magallanes, B., Eugenio-Pérez, D., & Pedraza-Chaverri, J. (2017). Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food and Chemical Toxicology, 109, 102–122. https://doi.org/https://doi.org/10.1016/j.fct.2017.08.021

Patel, D., Roy, A., Kundu, M., Jana, M., Luan, C.-H., Gonzalez, F. J., & Pahan, K. (2018). Aspirin binds to PPARα to stimulate hippocampal plasticity and protect memory. Proceedings of the National Academy of Sciences, 115(31), E7408–E7417. https://doi.org/10.1073/pnas.1802021115

Roy, A., Jana, M., Corbett, G. T., Ramaswamy, S., Kordower, J. H., Gonzalez, F. J., & Pahan, K. (2013). Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Reports, 4(4), 724–737. https://doi.org/10.1016/j.celrep.2013.07.028

Roy, A., & Pahan, K. (2015). PPARα signaling in the hippocampus: crosstalk between fat and memory. Journal of Neuroimmune Pharmacology : The Official Journal of the Society on NeuroImmune Pharmacology, 10(1), 30–34. https://doi.org/10.1007/s11481-014-9582-9

Tarawan, V. M., Gunadi, J. W., Setiawan, Lesmana, R., Goenawan, H., Meilina, D. E., Sipayung, J. A., Wargasetia, T. L., Widowati, W., Limyati, Y., & Supratman, U. (2019). Alteration of Autophagy Gene Expression by Different Intensity of Exercise in Gastrocnemius and Soleus Muscles of Wistar Rats. Journal of Sports Science & Medicine, 18(1), 146–154.

Wójtowicz, S., Strosznajder, A. K., Jeżyna, M., & Strosznajder, J. B. (2020). The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochemical Research, 45(5), 972–988. https://doi.org/10.1007/s11064-020-02993-5




DOI: https://doi.org/10.33024/jikk.v11i2.13291

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-nc4.footer##

Pendidikan Dokter Universitas Malahayati Lampung



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.