Peran Melanocortin Receptor (MCR) Tipe 3 Sebagai Faktor Protektif Pada Pneumonia Geriatri : Studi Literatur

Dicky Wahyudi, Diniwati Mukhtar, Tjandra Yoga Aditama, Himmi Marsiati

Sari


Usia lanjut menjadi salah satu faktor risiko paling penting untuk pneumonia. Pada kelompok lanjut usia yang menderita pneumonia, tanda-tanda klinis seringkali tidak khas, dan terdapat risiko lebih besar untuk mengalami kegagalan organ (pernapasan, ginjal atau jantung), kehilangan fungsi yang lebih besar dan, akibatnya, prognosis yang lebih buruk. Hal ini didasari oleh adanya mikroaspirasi patogen yang akan menginduksi pertahanan host. Sejumlah modulator peradangan endogen termasuk melanokortin terbukti dapat menghambat proses inflamasi dan membantu mencegah kerusakan jaringan. Peptida melanokortin telah terbukti menurunkan regulasi aktivasi nukleus faktor-kappa beta dan akibatnya sintesis sitokin pada fase awal akan menginduksi protein anti-inflamasi. Diketahui keberadaan reseptor MC3R pada makrofag alveolar menunjukkan aktif secara fungsional. MC3R terutama terlibat dalam efek imunomodulator. Aktivasi MC3R tidak hanya mengurangi produksi mediator pro-inflamasi, namun dapat mengatur diferensiasi sel serta kemotaksis leukosit. Melanokortin saat ini dapat ditambahkan ke sebagian besar mediator pro-resolusi melalui kemampuannya untuk meningkatkan fagositosis dan eferositosis. Namun, sejauh ini belum ada data terkait MC3R pada pasien pneumonia geriatri. Diperkirakan sifat MC3R akan menentukan fungsi lain/sifat biologis melanokortin dalam aspek resolusi inflamasi pada kasus pneumonia geriatrik


Kata Kunci


Faktor protektif; Melanocortin Receptor; Pneumonia

Teks Lengkap:

PDF

Referensi


Badan Penelitian dan Pengembangan Kesehatan Kementerian RI. (2018). Laporan Riskesdas 2018 Nasional.

Bertolini, A., Tacchi, R., & Vergoni, A. V. (2009). Brain effects of melanocortins. In Pharmacological Research (Vol. 59, Issue 1, pp. 13–47). https://doi.org/10.1016/j.phrs.2008.10.005

Butler, A. A., Kesterson, R. A., & Khong, K. (2000). A Unique Metabolic Syndrome Causes Obesity in the Melanocortin-3 Receptor-Deficient Mouse. Endocrinology, 141(9), 3518–3521.

Cabre, M. (2009). Pneumonia in the elderly. In Current Opinion in Pulmonary Medicine (Vol. 15, Issue 3, pp. 223–229). https://doi.org/10.1097/MCP.0b013e328326f571

Capsoni, F., Ongari, A. M., Reali, E., & Catania, A. (2009). Melanocortin peptides inhibit urate crystal-induced activation of phagocytic cells. Arthritis Research and Therapy, 11(5). https://doi.org/10.1186/ar2827

Catania, A., Gatti, S., Colombo, G., & Lipton, J. M. (2004). Targeting Melanocortin Receptors as a Novel Strategy to Control Inflammation. In Pharmacological Reviews (Vol. 56, Issue 1, pp. 1–29). https://doi.org/10.1124/pr.56.1.1

Catania, A., Lonati, C., Sordi, A., Carlin, A., Leonardi, P., & Gatti, S. (2010). The melanocortin system in control of inflammation. In TheScientificWorldJournal (Vol. 10, pp. 1840–1853). https://doi.org/10.1100/tsw.2010.173

Catbnia, * ’, A., Rajora, N., Capsoni, ? Franc0, Minonzio, F., Star$ And, R. A., & Lipton, J. M. (1996). The Neuropeptide a-MSH Has Specific Receptors on Neutrophils and Reduces Chemotaxis In Vitro. In Peptides (Vol. 17, Issue 4).

Chong, C. P., & Street, P. R. (2008). CME Topic Pneumonia in the Elderly: A Review of the Epidemiology, Pathogenesis, Microbiology, and Clinical Features. Southern Medical Journal, 101(11), 1141–1145.

Cone, R. D. (2006). Studies on the physiological functions of the melanocortin system. In Endocrine Reviews (Vol. 27, Issue 7, pp. 736–749). Endocrine Society. https://doi.org/10.1210/er.2006-0034

Delgado, R., Carlin, A., Airaghi, L., Demitri, M. T., Meda, L., Galimberti, D., Baron, P., Lipton, J. M., & Catania, A. (1998). Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. Journal of Leukocyte Biology, 63(6), 740–745. https://doi.org/10.1002/jlb.63.6.740

Fung, H. B., & Monteagudo-Chu, M. O. (2010). Community-acquired pneumonia in the elderly. In American Journal Geriatric Pharmacotherapy (Vol. 8, Issue 1, pp. 47–62). Excerpta Medica Inc. https://doi.org/10.1016/j.amjopharm.2010.01.003

Gantz, I., & Fong, T. M. (2003). The melanocortin system. American Journal of Physiology-Endocrinology and Metabolism, 284(3), 468–474. https://doi.org/10.1152/ajpendo

Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzer, G., Watson, S. J., DelValle, J., & Yamada, T. (1993). Molecular cloning of a novel melanocortin receptor. Journal of Biological Chemistry, 268(11), 8246–8250. https://doi.org/10.1016/s0021-9258(18)53088-x

Getting, S. J. (2006). Targeting melanocortin receptors as potential novel therapeutics. In Pharmacology and Therapeutics (Vol. 111, Issue 1, pp. 1–15).

https://doi.org/10.1016/j.pharmthera.2005.06.022

Getting, S. J., Christian, H. C., Flower, R. J., & Perretti, M. (2002). Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis and Rheumatism, 46(10), 2765–2775. https://doi.org/10.1002/art.10526

Getting, S. J., Gibbs, L., Clark, A. J., Flower, R. J., Affiliations, M. P., Disclaimer, P., & Immunol, J. (1999). POMC gene-derived peptides activate melanocortin type 3 receptor on murine macrophages, suppress cytokine release, and inhibit neutrophil migration in acute experimental inflammation. The Journal of Immunology , 162(12), 7446–7453. https://pubmed.ncbi.nlm.nih.gov/10358199/

Getting, S. J., Riffo-Vasquez, Y., Pitchford, S., Kaneva, M., Grieco, P., Page, C. P., Perretti, M., & Spina, D. (2008). A role for MC3R in modulating lung inflammation. Pulmonary Pharmacology and Therapeutics, 21(6), 866–873. https://doi.org/10.1016/j.pupt.2008.09.004

Joseph, C. G., Yao, H., Scott, J. W., Sorensen, N. B., Marnane, R. N., Mountjoy, K. G., & Haskell-Luevano, C. (2010). γ2-Melanocyte stimulation hormone (γ2- MSH) truncation studies results in the cautionary note that γ2- MSH is not selective for the mouse MC3R over the mouse MC5R. Peptides, 31(12), 2304–2313. https://doi.org/10.1016/j.peptides.2010.08.025

Kubes, P., Granger, D. N., Disclaimer, P., & Res, C. (1996). Leukocyte-endothelial cell interactions evoked by mast cells. In Review (Vol. 32, Issue 4). https://pubmed.ncbi.nlm.nih.gov/8915188/

Lam, C. W., Getting, S. J., & Perretti, M. (2005). In Vitro and In Vivo Induction of Heme Oxygenase 1 in Mouse Macrophages following Melanocortin Receptor Activation. The Journal of Immunology, 174(4), 2297–2304. https://doi.org/10.4049/jimmunol.174.4.2297

Lam, C. W., Perretti, M., & Getting, S. J. (2006). Melanocortin receptor signaling in RAW264.7 macrophage cell line. Peptides, 27(2), 404–412. https://doi.org/10.1016/j.peptides.2005.01.031

Land C, stephen. (2012). Inhibition of cellular and systemic inflammation cues in human bronchial epithelial cells by melanocortin-related peptides: mechanism of KPV action and a role for MC3R agonists. Int J Physiol Pathophysiol Pharmacol, 4(2), 59–73.

Lee, C. C., Chen, S. Y., Chang, I. J., Chen, S. C., & Wu, S. C. (2013). Erratum: Comparison of clinical manifestations and outcome of community-acquired bloodstream infections among the oldest old, elderly, and adult patients (Medicine (United States) (2007) 86 (138-144)). In Medicine (United States) (Vol. 92, Issue 4, p. 216). https://doi.org/10.1097/MD.0b013e31806a754c

Leoni, G., Patel, H. B., Sampaio, A. L. F., Gavins, F. N. E., Murray, J. F., Grieco, P., Getting, S. J., & Perretti, M. (2008). Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor‐null mice after ischemia‐reperfusion. The FASEB Journal, 22(12), 4228–4238. https://doi.org/10.1096/fj.08-113886

Leoni, G., Voisin, M. B., Carlson, K., Getting, S. J., Nourshargh, S., & Perretti, M. (2010). The melanocortin MC 1 receptor agonist BMS-470539 inhibits leucocyte trafficking in the inflamed vasculature. British Journal of Pharmacology, 160(1), 171–180. https://doi.org/10.1111/j.1476-5381.2010.00688.x

Lipton, J. M., & Catania, A. (1997). Anti-inflammatory actions of the neuroimmunomodulator alpha-MSH. Immunology Today, 18(3), 140–145.

Lonati, C., Gatti, stefano, & Catania, anna. (2020). Activation of Melanocortin Receptors as a Potential Strategy to Reduce Local and Systemic Reactions Induced by Respiratory Viruses. Frontiers in Endocrinology, 11, 1–12.

Lu, H., Zeng, N., Chen, Q., Wu, Y., Cai, S., Li, G., Li, F., & Kong, J. (2019). Clinical prognostic significance of serum high mobility group box-1 protein in patients with community-acquired pneumonia. Journal of International Medical Research, 47(3), 1232–1240. https://doi.org/10.1177/0300060518819381

Luger A, thomas, Scholzen, T., Brozka, T., & Bohm, M. (2003). New Insights into the Function of alpha-MSH and Related Peptides in the Immune System. Annals New York Academy of Science, 994, 133–140.

Mandrika, I., Muceniece, R., & Wikberg, J. E. S. (2001). Effects of melanocortin peptides on lipopolysaccharide/interferon-gamma-induced NF-kappaB DNA binding and nitric oxide production in macrophage-like RAW 264.7 cells: evidence for dual mechanisms of action. Biochemical Pharmacology, 61, 613–621.

Manna, S. K., & Aggarwal, B. B. (1998). Alpha-melanocyte-stimulating hormone inhibits the nuclear transcription factor NF-kappa B activation induced by various inflammatory agents. The Journal of Immunology , 161(6), 2873–2880.

Marik, P. E., & Kaplan, D. (2003). Aspiration Pneumonia and Dysphagia in the Elderly. Chest, 124(1), 328–336. https://doi.org/10.1378/chest.124.1.155

Montero-Melendez, T., Patel, H. B., Seed, M., Nielsen, S., Jonassen, T. E. N., & Perretti, M. (2011). The melanocortin agonist AP214 exerts anti-inflammatory and proresolving properties. American Journal of Pathology, 179(1), 259–269. https://doi.org/10.1016/j.ajpath.2011.03.042

Mountjoy, K. G. (2010). Functions for pro-opiomelanocortin-derived peptides in obesity and diabetes. In Biochemical Journal (Vol. 428, Issue 3, pp. 305–324). https://doi.org/10.1042/BJ20091957

Norling, L. V., Sampaio, A. L. F., Cooper, D., & Perretti, M. (2008). Inhibitory control of endothelial galectin‐1 on in vitro and in vivo lymphocyte trafficking . The FASEB Journal, 22(3), 682–690. https://doi.org/10.1096/fj.07-9268com

Palmer, L. B., Albulak, K., & Fields, S. (2001). Oral Clearance and Pathogenic Oropharyngeal Colonization in Elderly. American Journal of Respiratory and Critical Care Medicine, 164(3), 464–468.

Patel, H. B., Montero-Melendez, T., Greco, K. V., & Perretti, M. (2011). Melanocortin receptors as novel effectors of macrophage responses in inflammation. In Frontiers in Immunology (Vol. 2, Issue SEP). https://doi.org/10.3389/fimmu.2011.00041

Perretti, M. (1997). Endogenous mediators that inhibit the leukocyte– endothelium interaction. Trends in Pharmacological Sciences, 18(11), 418–425.

Raap, U., Brzoska, T., Sohl, S., Päth, G., Emmel, J., Herz, U., Braun, A., Luger, T., & Renz, H. (2003). α-Melanocyte-Stimulating Hormone Inhibits Allergic Airway Inflammation. The Journal of Immunology, 171(1), 353–359. https://doi.org/10.4049/jimmunol.171.1.353

Rajora, N., Boccoli, G., Catania, A., & Lipton, J. M. (1997). alpha-MSH Modulates Experimental Inflammatory Bowel Disease. Peptides, 18(3), 381–385.

Regunath, H., Yuji, ;, & Affiliations, O. (2024). Community-Acquired Pneumonia Continuing Education Activity. StatPearls of the National Library of Medicine, National Institutes of Health. https://www.ncbi.nlm.nih.gov/books/NBK430749/?report=printable

Renshaw, M., Rockwell, J., Engleman, C., Gewirtz, A., Katz, J., & Sambhara, S. (2002). Cutting Edge: Impaired Toll-Like Receptor Expression and Function in Aging. The Journal of Immunology, 169(9), 4697–4701. https://doi.org/10.4049/jimmunol.169.9.4697

Roy, S., Roy, S. J., Pinard, S., Taillefer, L. D., Rached, M., Parent, J. L., & Gallo-Payet, N. (2011). Mechanisms of melanocortin-2 receptor (MC2R) internalization and recycling in human embryonic kidney (HEK) cells: Identification of key Ser/Thr (S/T) amino acids. Molecular Endocrinology, 25(11), 1961–1977. https://doi.org/10.1210/me.2011-0018

Serhan, C. N., Chiang, N., & Van Dyke, T. E. (2008). Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. In Nature Reviews Immunology (Vol. 8, Issue 5, pp. 349–361). https://doi.org/10.1038/nri2294

Switonski, M., Mankowska, M., & Salamon, S. (2013). Family of melanocortin receptor (MCR) genes in mammals-mutations, polymorphisms and phenotypic effects. In Journal of Applied Genetics (Vol. 54, Issue 4, pp. 461–472). https://doi.org/10.1007/s13353-013-0163-z

Tailor, A., Tomlinson, A., Salas, A., Panés, J., Granger, D. N., Flower, R. J., & Perretti, M. (1999). Dexamethasone inhibition of leucocyte adhesion to rat mesenteric postcapillary venules: role of intercellular adhesion molecule 1 and KC. Gut, 45(5), 705–712.

Tsoumani, E., Carter, J. A., Salomonsson, S., Stephens, J. M., & Bencina, G. (2023). Clinical, economic, and humanistic burden of community acquired pneumonia in Europe: a systematic literature review. In Expert Review of Vaccines (Vol. 22, Issue 1, pp. 876–884). Taylor and Francis Ltd. https://doi.org/10.1080/14760584.2023.2261785

Wikberg, J. E. S., Muceniece, R., Mandrika, I., Prusis, P., Lindblom, J., Post, C., & Skottner, A. (2000). New aspects on the melanocortins and their receptors. Pharmacological Research, 42(5), 393–420. https://doi.org/10.1006/phrs.2000.0725

Worl Health Organization. (2024). Pneumonia. Health Topic.

Yang, Y. (2011). Structure, function and regulation of the melanocortin receptors. In European Journal of Pharmacology (Vol. 660, Issue 1, pp. 125–130). https://doi.org/10.1016/j.ejphar.2010.12.020

Zhang, Y., Wu, X., He, Y., Kastin, A. J., Hsuchou, H., Rosenblum, C. I., & Pan, W. (2009). Melanocortin potentiates leptin-induced STAT3 signaling via MAPK pathway. Journal of Neurochemistry, 110(1), 390–399. https://doi.org/10.1111/j.1471-4159.2009.06144.x




DOI: https://doi.org/10.33024/jikk.v11i12.17608

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-nc4.footer##

Pendidikan Dokter Universitas Malahayati Lampung



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.