Hubungan Jarak Waktu dan Jumlah Vaksin dengan Hasil Reaktif Ig-G SARS-Cov-2 (Studi Kasus Populasi Remaja SMA Kalam Kudus II Jakarta)

Donatila Mano S* -  Universitas Tarumanagara, Indonesia
Yohanes Firmansyah -  Universitas Tarumanagara, Indonesia
Hendsun Hendsun -  Universitas Tarumanagara, Indonesia
Edwin Destra -  Universitas Tarumanagara, Indonesia
Alexander Halim Santoso -  Universitas Tarumanagara, Indonesia

ABSTRACT

 

Vaccination against SARS-CoV-2 is essential in enhancing the body's defense against SARS-CoV-2 infection by increasing the level of Ig-G antibodies against SARS-CoV-2. Determining the relationship between the number of vaccines and the vaccination interval plays a role in the level of Ig-G antibodies against SARS-CoV-2 in the body to prevent primary infection from SARS-CoV-2. The assessment of cause-effect relationships is conducted through a cross-sectional study involving 76 subjects who met the inclusion criteria. The analysis performed includes descriptive analysis and analytical analysis to evaluate qualitative and quantitative data. In subjects who received a third dose of the vaccine, the Ig-G levels against SARS-CoV-2 were found to be higher compared to those who did not receive a third dose (p-value < 0.05). The levels of Ig-G against SARS-CoV-2 in the body are not consistently high, indicating the need for repeated vaccine administration every few months to maintain Ig-G levels (p-value < 0.05). This study demonstrates that the number of vaccinations plays a role in increasing the levels of Ig-G antibodies against SARS-CoV-2, thus aiding in the body's fight against SARS-CoV-2 infection. The vaccination interval is also an important factor to consider, as the Ig-G levels against SARS-CoV-2 may decline over time, necessitating repeated vaccinations to maintain Ig-G levels. Both the number of vaccinations and the vaccination interval are crucial in maintaining the levels of Ig-G antibodies against SARS-CoV-2, thus preventing primary SARS-CoV-2 infections.

 

Keywords: Ig-G SARS-CoV-2, Antibodies, Primary Infection, Vaccination Interval, Number of Vaccines

 

 

ABSTRAK

 

Vaksinasi SARS-Cov-2 merupakan hal yang esensial dalam meningkatkan pertahanan tubuh terhadap infeksi SARS-Cov-2 dengan meningkatkan jumlah antibodi Ig-G SARS-Cov-2. Menentukan hubungan antara jumlah vaksin dan jarak waktu vaksinasi dalam perananannya terhadap kadar antibodi Ig-G SARS-Cov-2 di dalam tubuh untuk mencegah terjadinya Infeksi Primer dari SARS-Cov-2. Penilaian hubungan sebab akibat dilakukan dengan penelitian potong lintang dan dilakukan pada 76 subjek yang telah memenuhi kriteria inklusi. Analisa yang dilakukan adalah analisa deskriptif dan analisa analitik untuk menilai data kualitatif dan kuantitatif. Pada subjek yang menerima vaksin ketiga memiliki nilai Ig-G SARS-Cov-2 yang lebih tinggi dibandingkan dengan yang tidak menerima vaksin ketiga (p-value <0,05). Kadar Ig-G SARS-Cov-2 juga tidak selalu tinggi di dalam tubuh sehingga perlu dilakukan pemberian vaksin berulang setiap beberapa bulan untuk mempertahankan kadar Ig-G SARS-Cov-2 (p-value <0,05). Penelitian ini menunjukan bahwa jumlah vaksinasi memiliki peranan dalam meningkatkan kadar Ig-G SARS-Cov-2 sehingga antibodi dalam melawan infeksi dari SARS-Cov-2. Jarak vaksinasi juga merupakan hal yang perlu diperhatikan karena kadar Ig-G SARS-Cov-2 akan menurun sehingga diperlukan vaksin berulang untuk mempertahankan kadar Ig-G SARS-Cov-2. Pemberian jumlah vaksinasi dan jarak waktu merupakan hal yang perlu diperhatikan dan menjadi esensial dalam peranannya untuk mempertahankan kadar antibodi Ig-G SARS-Cov-2 untuk mencegah terjadinya infeksi primer SARS-Cov-2.

 

Kata Kunci: Ig-G SARS-Cov-2, Antibodi, Infeksi Primer, Jarak Vaksin, Jumlah Vaksin

Kata Kunci : Ig-G SARS-Cov-2; Antibodi; Infeksi Primer; Jarak Vaksin; Jumlah Vaksin

  1. Ali, H., Alahmad, B., Al-Shammari, A. A., Alterki, A., Hammad, M., Cherian, P., Alkhairi, I., Sindhu, S., Thanaraj, T. A., Mohammad, A., Alghanim, G., Deverajan, S., Ahmad, R., El-Shazly, S., Dashti, A. A., Shehab, M., Al-Sabah, S., Alkandari, A., Abubaker, J., … Al-Mulla, F. (2021). Previous COVID-19 Infection and Antibody Levels After Vaccination. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.778243
  2. Firmansyah, Y., . E., Gosal, D., Haryanto, I., & . H. (2021). Contamination in COVID-19 sample - the elaboration between medical and legal impact. International Journal of Advances in Medicine, 8(10), 1611. https://doi.org/10.18203/2349-3933.ijam20213720
  3. Gilboa, M., Regev-Yochay, G., Mandelboim, M., Indenbaum, V., Asraf, K., Fluss, R., Amit, S., Mendelson, E., Doolman, R., Afek, A., Freedman, L. S., Kreiss, Y., & Lustig, Y. (2022). Durability of Immune Response After COVID-19 Booster Vaccination and Association With COVID-19 Omicron Infection. JAMA Network Open, 5(9), e2231778. https://doi.org/10.1001/jamanetworkopen.2022.31778
  4. Grupel, D., Gazit, S., Schreiber, L., Nadler, V., Wolf, T., Lazar, R., Supino-Rosin, L., Perez, G., Peretz, A., Ben Tov, A., Mizrahi-Reuveni, M., Chodick, G., & Patalon, T. (2021). Kinetics of SARS-CoV-2 anti-S IgG after BNT162b2 vaccination. Vaccine, 39(38), 5337–5340. https://doi.org/10.1016/j.vaccine.2021.08.025
  5. Gudbjartsson, D. F., Norddahl, G. L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., Arnthorsson, A. O., Helgason, D., Bjarnadottir, K., Ingvarsson, R. F., Thorsteinsdottir, B., Kristjansdottir, S., Birgisdottir, K., Kristinsdottir, A. M., Sigurdsson, M. I., Arnadottir, G. A., Ivarsdottir, E. V., Andresdottir, M., Jonsson, F., … Stefansson, K. (2020). Humoral Immune Response to SARS-CoV-2 in Iceland. New England Journal of Medicine, 383(18), 1724–1734. https://doi.org/10.1056/NEJMoa2026116
  6. Harrison, A. G., Lin, T., & Wang, P. (2020). Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. Trends in Immunology, 41(12), 1100–1115.
  7. Hendsun, H., Firmansyah, Y., Felicia, F., & Julita, E. (2020). Neutrophils-Lymphocytes Ratio (NLR) and Platelet-Lymphocytes Ratio (PLR) as Predictors of NSTEMI Events 1. Journal of Biological Engineering Research and Review, 7(1), 24–32.
  8. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. https://doi.org/10.1016/S0140-6736(20)30183-5
  9. Kannan, S., Shaik Syed Ali, P., Sheeza, A., & Hemalatha, K. (2020). COVID-19 (Novel Coronavirus 2019) - recent trends. European Review for Medical and Pharmacological Sciences. https://doi.org/10.26355/eurrev_202002_20378
  10. Karlsson, L. C., Lewandowsky, S., Antfolk, J., Salo, P., Lindfelt, M., Oksanen, T., Kivimäki, M., & Soveri, A. (2019). The association between vaccination confidence, vaccination behavior, and willingness to recommend vaccines among Finnish healthcare workers. PLoS ONE, 14(10), 1–17. https://doi.org/10.1371/journal.pone.0224330
  11. Kislaya, I., Peralta‐Santos, A., Borges, V., Vieira, L., Sousa, C., Ferreira, B., Pelerito, A., Gomes, J. P., Leite, P. P., & Nunes, B. (2023). Comparative complete scheme and booster effectiveness of COVID‐19 vaccines in preventing SARS‐CoV‐2 infections with SARS‐CoV‐2 Omicron (BA.1) and Delta (B.1.617.2) variants: A case–case study based on electronic health records. Influenza and Other Respiratory Viruses, 17(3). https://doi.org/10.1111/irv.13121
  12. Li, Y.-D., Chi, W.-Y., Su, J.-H., Ferrall, L., Hung, C.-F., & Wu, T.-C. (2020). Coronavirus vaccine development: from SARS and MERS to COVID-19. Journal of Biomedical Science, 27(1), 104. https://doi.org/10.1186/s12929-020-00695-2
  13. Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S., & Zhou, Q. (2021). A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Central Science, 7(4), 512–533. https://doi.org/10.1021/acscentsci.1c00120
  14. Menni, C., Klaser, K., May, A., Polidori, L., Capdevila, J., Louca, P., Sudre, C. H., Nguyen, L. H., Drew, D. A., Merino, J., Hu, C., Selvachandran, S., Antonelli, M., Murray, B., Canas, L. S., Molteni, E., Graham, M. S., Modat, M., Joshi, A. D., … Spector, T. D. (2021). Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. The Lancet Infectious Diseases, 3099(21), 1–11. https://doi.org/10.1016/s1473-3099(21)00224-3
  15. Ong, E., Wong, M. U., Huffman, A., & He, Y. (2020). COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01581
  16. Plumb, I. D., Feldstein, L. R., Barkley, E., Posner, A. B., Bregman, H. S., Hagen, M. B., & Gerhart, J. L. (2022). Effectiveness of COVID-19 mRNA Vaccination in Preventing COVID-19–Associated Hospitalization Among Adults with Previous SARS-CoV-2 Infection — United States, June 2021–February 2022. MMWR. Morbidity and Mortality Weekly Report, 71(15), 549–555. https://doi.org/10.15585/mmwr.mm7115e2
  17. Sassi, F., Tamone, C., & D’Amelio, P. (2018). Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients, 10(11), 1656. https://doi.org/10.3390/nu10111656
  18. Setiawan, I., Paulus, O., Firmansyah, Y., & Hendsun, H. (2022). Pengaruh Riwayat Infeksi Covid-19 dengan Kejadian Ikutan Pasca Imunisasi Moderna. Jurnal Kesehatan, 10(2), 114–121. https://doi.org/10.25047/jkes.v10i2.325
  19. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. In Journal of Advanced Research. https://doi.org/10.1016/j.jare.2020.03.005
  20. Singhal, T. (2020). A Review of Coronavirus Disease-2019 (COVID-19). Indian Journal of Pediatrics, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6
  21. Utama, L. (2020). Gaya Hidup Mayarakat Nusa Tenggara Timur Dalam Menghadapi Pandemi Corona Virus Disease 19 (Covid-19). Jurnal Kesehatan Masyarakat, 7(1), 34–40.
  22. Widysanto, A., Prasetya, I. B., Meriyanti, T., Sungono, V., Setiawan, D. L., Gunawan, E., Adiputra, B., Lorens, J. O., Santi, T., Pradhana, C. M. L., Yusuf, I., & Gunawan, C. (2022). The risk factors of SARS-CoV-2 antibody level differences in healthcare workers post vaccination in Siloam hospitals: A nationwide multicenter study. Infectious Medicine, 1(4), 229–235. https://doi.org/10.1016/j.imj.2022.10.001
  23. World Health Organization. (2020). WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization.
  24. Wu, D., Lu, J., Liu, Q., Ma, X., & He, W. (2020). To alert co-infection of SARS-COV-2 and dengue virus in developing countries in the dengue-endemic area. Infection Control and Hospital Epidemiology, 2020. https://doi.org/10.1017/ice.2020.187
  25. Yang, L., Chen, Y., Yan, H., Zhang, P., Xu, X., Tang, B., Zhao, P., & Ren, R. (2015). A survey of the 2014 dengue fever epidemic in Guangzhou, China. Emerging Microbes and Infections. https://doi.org/10.1038/emi.2015.57
  26. Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., Han, W., Chen, Z., Tang, R., Yin, W., Chen, X., Hu, Y., Liu, X., Jiang, C., Li, J., Yang, M., Song, Y., Wang, X., Gao, Q., & Zhu, F. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases, 21(2), 181–192. https://doi.org/10.1016/S1473-3099(20)30843-4