Development of Vaccine Candidates Against Mycobacterium Tuberculosis in 2019-2023
Sari
ABSTRACT
With extensive use of the Bacillus Calmette–Guérin (BCG) vaccine, the global prevalence of Mycobacterium tuberculosis (MTB) remains. A number of vaccines proposed to cure and prevent tuberculosis (TB) infection are undergoing various stages of clinical trials. Although vaccine production is progressing, more attention is needed. A number of TB vaccines are currently undergoing clinical trials, most of which rely on a combination of proteins and/or adjuvants or recombinant viral vectors specific for MTB antigens. We tried to cover the range of TB vaccines in this study by analyzing their composition, the immunological responses they elicit, and the stages of clinical trials. To find out the Development Of Prospective Vaccines Against Mycobacterium Tuberculosis. This research uses a literature review, between August 2023 and November 2023, the authors of this literature review checked PubMed, Science Direct, Google Scholar, and other databases containing research findings or scientific articles. Only studies that met the above search criteria were included in the systematic review. Many recently developed tuberculosis vaccines are reportedly in the final stages of clinical trials, where they have significantly strengthened the immune system and even produced protection against the host. Immunization produced by vaccines that have successfully passed the initial stages of clinical trials is safe and effective, and can even surpass BCG in terms of immunity. Based on the description above, it can be concluded that many recently developed tuberculosis vaccines are reported to be in the final stages of clinical trials, where they have significantly strengthened the immune system and even produced protection against the host. Immunization produced by vaccines that have successfully passed the initial stages of clinical trials is safe and effective, and can even surpass BCG in terms of immunity. With the development of new TB vaccines that strengthen the body's immunity and create effective delivery mechanisms, hopes for TB treatment and prevention are increasing. The development of vaccine effects can be facilitated, in part, through the use of effective delivery mechanisms, which have also been used in TB vaccines.
Keywords: Tuberculosis, Vaccine, Bacteria, Mycobacterium Tuberculosis, BCG
Teks Lengkap:
Download ArtikelReferensi
Bagcchi, S. (2023). WHO’s global tuberculosis report 2022. The Lancet Microbe, 4(1), 20.
Bekker, L.-G., Dintwe, O., Fiore-Gartland, A., Middelkoop, K., Hutter, J., Williams, A., Randhawa, A. K., Ruhwald, M., Kromann, I., & Andersen, P. L. (2020). A phase 1b randomized study of the safety and immunological responses to vaccination with H4: IC31. In H56: IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa: Vol. EClinicalM (p. 100313).
Bethesda (MD): National Library of Medicine. (2021). Identifier NCT04975178, Efficacy. Safety and Immunogenicity Evaluation of MTBVAC in Newborns in Sub-Saharan Africa (MTBVACN3. https://clinicaltrials.gov/study/NCT04975178?term=MTBVAC&rank=4
Bourinbaiar, A. S., Batbold, U., Efremenko, Y., Sanjagdorj, M., Butov, D., Damdinpurev, N., Grinishina, E., Mijiddorj, O., Kovolev, M., & Baasanjav, K. (2020). Phase III, placebo-controlled, randomized, double-blind trial of tableted, therapeutic TB vaccine (V7) containing heat-killed M. vaccae administered daily for one month. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 18, 100141.
Darrah, P. A., Zeppa, J. J., & Maiello, P. (2020). Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 577(7788), 95–102.
Dijkman, K., Aguilo, N., Boot, C., Hofman, S. O., Sombroek, C. C., & Vervenne, R. A. W. (2021). Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection. Cell Rep Med, 2(100187).
Hamiel, U., Kozer, E., & Youngster, I. (2020). SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults. JAMA.
Huang, C.-Y., & Hsieh, W.-Y. (2019). Efficacy of Mycobacterium vaccae immunotherapy for patients with tuberculosis: A systematic review and meta-analysis. Human Vaccines & Immunotherapeutics, 13(9), 1960–1971.
Idoko, O. T., Owolabi, O. A., Owiafe, P. K., Moris, P., Odutola, A., Bollaerts, A., Ogundare, E., Jongert, E., Demoitié, M.-A., & Ofori-Anyinam, O. (2019). Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine Journal Pre-proof 27 when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial. Tuberculosis, 94(6), 564–578.
Kumarasamy, N., Poongulali, S., Beulah, F. E., Akite, E. J., Ayuk, L. N., Bollaerts, A., Demoitié, M.-A., Jongert, E., Ofori-Anyinam, O., & Meeren, O. (2019). Long-term safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in HIV-positive and-negative Indian adults: Results from a phase II randomized controlled trial. Medicine, 97(45).
Kwon, B.-E., Ahn, J.-H., Min, S., Kim, H., Seo, J., Yeo, S.-G., & Ko, H.-J. (2019). Development of new preventive and therapeutic vaccines for tuberculosis. Immune Network, 18(2).
L. Grode, C.A. Ganoza, C. Brohm, J. Weiner 3rd, B. Eisele, S. H. K. (2019). Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 31(9), 1340–1348.
Lahey, T., Laddy, D., Hill, K., Schaeffer, J., Hogg, A., Keeble, J., Dagg, B., Ho, M. M., Arbeit, R. D., & Reyn, C. F. (2019). Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One, 11(12), 168521.
Loxton, A. G., Knaul, J. K., Grode, L., Gutschmidt, A., Meller, C., Eisele, B., Johnstone, H., Spuy, G., Maertzdorf, J., & Kaufmann, S. H. (2019). Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clinical and Vaccine Immunology, 24(2), 00439–16.
Mahasha, P. W., Ndwandwe, D. E., Mavundza, E. J., Shey, M., & Wiysonge, C. S. (2019). Systematic review protocol on Bacillus Calmette-Guerin (BCG) revaccination and protection against tuberculosis. BMJ Open, 9(10).
Masonou, T., Hokey, D. A., Lahey, T., Halliday, A., Berrocal-Almanza, L. C., Wieland-Alter, W. F., Arbeit, R. D., Lalvani, A., & Reyn, C. F. (2019). CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: a randomized, placebo-controlled trial. PloS One, 14(5), 217091.
Meeren, O., Hatherill, M., Nduba, V., Wilkinson, R. J., Muyoyeta, M., Brakel, E., Ayles, H. M., Henostroza, G., Thienemann, F., & Scriba, T. J. (2019). Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. New England Journal of Medicine, 379(17), 1621–1634.
Messina, N. L., Zimmermann, P., & Curtis, N. (2019). The impact of vaccines on heterologous adaptiveimmunity.ClinMicrobiol Infect, 25(12), 1484–93.
Minhas, A., Grode, L., Cotton, M., Walzl, G., Hesseling, A., Kaufmann, S., & Eisele, B. (2019). VPM1002: A new TB prime vaccine on the horizon. Pneumologie, 68(02), 46.
Nieuwenhuizen, N. E., Kulkarni, P. S., Shaligram, U., Cotton, M. F., Rentsch, C. A., Eisele, B., Grode, L., & Kaufmann, S. H. (2019). The recombinant Bacille Calmette–Guérin vaccine VPM1002: ready for clinical efficacy testing. Frontiers in Immunology, 8.
Ottenhoff, T. H. (2020). A Trial of M72/AS01E Vaccine to Prevent Tuberculosis. The New England Journal of Medicine, 382(16), 1576–1577.
Pérez, I., Uranga, S., Sayes, F., Frigui, W., Samper, S., Arbués, A., Aguiló, N., Brosch, R., Martín, C., & Gonzalo-Asensio, J. (2020). Live attenuated TB vaccines representing the three modern Mycobacterium tuberculosis lineages reveal that the Euro-American genetic background confers optimal vaccine potential. EBioMedicine, 55,102761.
Pratama, W. A. (2019). Profil subkelas IgG mencit yang diimunisasi dengan kandidat vaksin DNA tuberkulosis yang mengekspresikanResuscitation Promoting Factor-D (p. 189). Fakultas Kedokteran Universitas Indonesia.
Saraswati, R. D., Rukmana, A., Fithriyah, S., & Rakhmawati, A. (2018). Development of a Tuberculosis Vaccine Seed: Construction of Resuscitation-Promoting Factor B DNA Vaccine and its Expression in Vitro and in Vivo. Makara J. Health Res, 22(1), 8–13.
Schrager, L. K., Vekemens, J., Drager, N., Lewinsohn, D. M., & Olesen, O. F. (2020). The status of tuberculosis vaccine development. Lancet Infect Dis, 20(3).
Sweeney, K. A., Dao, D. N., Goldberg, M. F., Hsu, T., Venkataswamy, M. M., Henao-Tamayo, M., Ordway, D., Sellers, R. S., Jain, P., & Chen, B. (2019). A recombinant Mycobacterium smegmatis induces potent bactericidal immunityagainstMycobacterium tuberculosis. Nature Medicine, 17(10), 1261–1268.
Tafaghodi, M., Khademi, F., & Firouzi, Z. (2020). Polymer-based nanoparticles as delivery systems for treatment and vaccination of tuberculosis, Nanotechnology-based approaches for tuberculosis treatment (Vol. Elsevier20, pp. 123–142).
Tait, D. R., Hatherill, M., Meeren, O., Ginsberg, A. M., Brakel, E., Salaun, B., Scriba, T. J., Akite, E. J., Ayles, H. M., & Bollaerts, A. (2019). Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. New England Journal of Medicine, 381(25), 2429–2439.
Tait, D. R., Meeren, O., & Hatherill, M. (2019). A Trial of M72/AS01E Vaccine to Prevent Tuberculosis. Reply, The New England Journal of Medicine, 382(16), 1577.
Tarancón, R., Domínguez-Andrés, J., Uranga, S., Ferreira, A. V, Groh, L. A., & Domenech, M. (2020). New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia. PLoS Pathog, 16:e100840.
Usman, M. M., Ismail, S., & Teoh, T. C. (2019). Vaccine research and development: tuberculosis as a global health threat. Central European Journal of Immunology, 42(2), 196–204.
Verreck, F. A. W., Vervenne, R. A. W., Kondova, I., Kralingen, K. W., Remarque, E. J., & Braskamp, G. (2019). MVA.85Aboosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS ONE, 4:e5264.
Vierboom, M. P. M., Dijkman, K., Sombroek, C. C., Hofman, S. O., Boot, C., & Vervenne, R. A. W. (2021). Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccinationcomparedtostandard intradermal vaccination. Cell Rep Med, 2(100185).
White, A. D., Sibley, L., Sarfas, C., Morrison, A., Gullick, J., & Clark, S. (2021). MTBVAC vaccination protects rhesus macaques against aerosol challenges with M. tuberculosis and induces immune signatures analogous to those observed in clinical studies. NPJ Vaccines, 6(4).
DOI: https://doi.org/10.33024/mnj.v6i5.14396
Refbacks
- Saat ini tidak ada refbacks.
Penerbit: Universitas Malahayati
Semua artikel dapat digunakan dibawah lisensi Creative Commons Attribution-ShareAlike 4.0 International License