Pioneering Prostate Cancer Diagnosis: Evaluating AI Against Traditional Methods - A Systematic Literature Review
Sari
ABSTRACT
Prostate cancer is one of the most common forms of men's cancer in the world and the understanding of its epidemiology is crucial to effective prevention, early detection and management strategies. This systematic review highlights the potential of artificial intelligence-based diagnostic methods to revolutionize the early diagnosis of prostate cancer. A comprehensive literature search was carried out using databases such as PubMed, Google Scholar and Scopus. After removing duplicates, titles and abstracts were examined in 279 studies and the following full texts were examined in 128 studies. We have ten studies to review in total. Therefore, we chose to review data for all 10 identified studies that applied AI techniques to detect ca prostate. The Paige Prostate Alpha AI system significantly enhances pathologists' diagnostic capabilities, leading to more accurate and effective prostate cancer detection. These limitations indicate that further research is required to address these issues and validate the results in a more diverse and controlled environment. AI-based diagnostic methods have shown significant promise in enhancing the early detection of prostate cancer. As technology continues to advance, integrating AI with traditional diagnostic approaches could lead to more effective, efficient, and accurate prostate cancer screening and diagnosis. Future studies should focus on large-scale clinical trials and real-world applications to validate these findings and facilitate the adoption of AI in clinical settings.
Keywords: Prostate Cancer, Artificial Intelligent, Deep Machine Learning, MRI
Kata Kunci
Teks Lengkap:
Download ArtikelReferensi
Bao, W., Cui, Q., Chen, B., & Yang, B. (2022). Computational and mathematical methods in medicine. Article ID, 418106(10).
Catalona, W. J., Richie, J. P., Ahmann, F. R., Hudson, M. A., Scardino, P. T., Flanigan, R. C., DeKernion, J. B., Ratliff, T. L., Kavoussi, L. R., & Dalkin, B. L. (2017). Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. The Journal of Urology, 197(2S), S200–S207. https://doi.org/10.1016/j.juro.2016.10.073
Cosma, G., McArdle, S. E., Foulds, G. A., Hood, S. P., Reeder, S., Johnson, C., Khan, M. A., & Pockley, A. G. (2021). Prostate cancer: early detection and assessing clinical risk using deep machine learning of high dimensional peripheral blood flow cytometric phenotyping data. Frontiers in Immunology, 12, 786828. https://doi.org/10.3389/fimmu.2021.786828
da Silva, L. M., Pereira, E. M., Salles, P. G. O., Godrich, R., Ceballos, R., Kunz, J. D., Casson, A., Viret, J., Chandarlapaty, S., & Ferreira, C. G. (2021). Independent real‐world application of a clinical‐grade automated prostate cancer detection system. The Journal of Pathology, 254(2), 147–158. https://doi.org/10.1002/path.5662
Deng, X., Li, T., Mo, L., Wang, F., Ji, J., He, X., Mohamud, B. H., Pradhan, S., & Cheng, J. (2022). Machine learning model for the prediction of prostate cancer in patients with low prostate-specific antigen levels: A multicenter retrospective analysis. Frontiers in Oncology, 12, 985940. https://doi.org/10.3389/fonc.2022.985940
Denmeade, S. R., & Isaacs, J. T. (2004). Development of prostate cancer treatment: the good news. The Prostate, 58(3), 211-224.
Koo, K. M., Mainwaring, P. N., Tomlins, S. A., & Trau, M. (2019). Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nature Reviews Urology, 16(5), 302-317.
Liss, M. A., Leach, R. J., Sanda, M. G., & Semmes, O. J. (2020). Prostate cancer biomarker development: National Cancer Institute's early detection research network prostate cancer collaborative group review. Cancer Epidemiology, Biomarkers & Prevention, 29(12), 2454-2462.
Morote, J., Campistol, M., Triquell, M., Celma, A., Regis, L., de Torres, I., Semidey, M. E., Mast, R., Santamaria, A., & Planas, J. (2022). Improving the early detection of clinically significant prostate cancer in men in the challenging prostate imaging-reporting and data system 3 category. European Urology Open Science, 37, 38–44. https://doi.org/10.1016/j.euros.2021.12.009
Miyahira, A. K., & Soule, H. R. (2022). The history of prostate-specific membrane antigen as a theranostic target in prostate cancer: the cornerstone role of the prostate cancer foundation. Journal of Nuclear Medicine, 63(3), 331-338.
Raciti, P., Sue, J., Ceballos, R., Godrich, R., Kunz, J. D., Kapur, S., Reuter, V., Grady, L., Kanan, C., & Klimstra, D. S. (2020). Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Modern Pathology, 33(10), 2058–2066. https://doi.org/10.1038/s41379-020-0551-y
Sun, Z., Wang, K., Kong, Z., Xing, Z., Chen, Y., Luo, N., Yu, Y., Song, B., Wu, P., & Wang, X. (2023). A multicenter study of artificial intelligence-aided software for detecting visible clinically significant prostate cancer on mpMRI. Insights Into Imaging, 14(1), 72. https://doi.org/10.1186/s13244-023-01421-w
Teng, M., Zhou, S., Cai, C., Lupien, M., & He, H. H. (2021). Pioneer of prostate cancer: past, present and the future of FOXA1. Protein & Cell, 12(1), 29-38.
Watson, R. W. G., & Schalken, J. A. (2004). Future opportunities for the diagnosis and treatment of prostate cancer. Prostate Cancer and Prostatic Diseases, 7(1), S8-S13.
Winkel, D. J., Breit, H.-C., Shi, B., Boll, D. T., Seifert, H.-H., & Wetterauer, C. (2020). Predicting clinically significant prostate cancer from quantitative image features including compressed sensing radial MRI of prostate perfusion using machine learning: comparison with PI-RADS v2 assessment scores. Quantitative Imaging in Medicine and Surgery, 10(4), 808. https://doi.org/10.21037/qims.2020.03.08
Winkel, D. J., Wetterauer, C., Matthias, M. O., Lou, B., Shi, B., Kamen, A., Comaniciu, D., Seifert, H.-H., Rentsch, C. A., & Boll, D. T. (2020). Autonomous detection and classification of PI-RADS lesions in an MRI screening population incorporating multicenter-labeled deep learning and biparametric imaging: proof of concept. Diagnostics, 10(11), 951. https://doi.org/10.3390/diagnostics10110951
Yang, X., Chen, H., Xu, D., Chen, X., Li, Y., Tian, J., Wang, D., & Pang, J. (2022). Efficacy and safety of Androgen Deprivation Therapy (ADT) combined with modified docetaxel chemotherapy versus ADT combined with standard docetaxel chemotherapy in patients with metastatic castration-resistant prostate cancer: study protocol for a multicentre prospective randomized controlled trial. BMC Cancer, 22(1), 177. https://doi.org/10.1186/s12885-022-09276-y
Youssef, M., Moussa, N., W. Helmy, M., & Haroun, M. (2022). Unraveling the therapeutic potential of GANT61/Dactolisib combination as a novel prostate cancer modality. Medical Oncology, 39(10), 143. https://doi.org/10.1007/s12032-022-01718-8
Zhang, H., Ji, J., Liu, Z., Lu, H., Qian, C., Wei, C., Chen, S., Lu, W., Wang, C., & Xu, H. (2023). Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study. BMC Medicine, 21(1), 270. https://doi.org/10.1186/s12916-023-02964-x
https://doi.org/10.3389/fonc.2023.1170397.
DOI: https://doi.org/10.33024/mnj.v6i10.17042
Refbacks
- Saat ini tidak ada refbacks.
Penerbit: Universitas Malahayati
Semua artikel dapat digunakan dibawah lisensi Creative Commons Attribution-ShareAlike 4.0 International License