PERAN NITRIT OKSIDA TERHADAP TEKANAN DARAH
Abstract
Abstrak: Peran Nitrit Oksida Terhadap Tekanan Darah. Hipertensi merupakan faktor risiko paling penting yang dapat dimodifikasi untuk semua penyebab morbiditas dan mortalitas di seluruh dunia yang dikaitkan dengan peningkatan risiko penyakit kardiovaskular seperti penyakit jantung koroner, gagal jantung, stroke, infark miokard, fibrilasi atrium dan penyakit arteri perifer. Tekanan darah dan prevalensi pasien hipertensi meningkat seiring bertambahnya usia. Pemeliharaan tekanan darah secara fisiologis melibatkan interaksi kompleks dari berbagai elemen sistem neurohumoral terintegrasi yang mencakup Renin–Angiotensin–Aldosterone System (RAAS), peran peptida natriuretik, endotelium, Sympathetic Nervous System (SNS) dan sistem kekebalan tubuh. Nitrit oksida merupakan salah satu molekul pensinyalan penting dalam mempertahankan homeostatis vaskular. Penurunan bioavailabilitas NO adalah faktor utama yang menghubungkan stres oksidatif dengan disfungsi endotel dan hipertensi.
Keywords
Full Text:
PDFReferences
Aflyatumova, G. N. et al. 2018. Endothelin-1, nitric oxide, serotonin and high blood pressure in male adolescents. Vascular health and risk management. 14: 213– 223.
Ahmad, A. et al. 2018. Role of Nitric Oxide in the Cardiovascular and Renal Systems. International Journal of Molecular Sciences. 19(9).
Bakris, G. L. and Sorrentino, M. 2017. Hypertension: A Companion to Braunwald’s Heart Disease E-Book. Elsevier Health Sciences.
Capettini, L. S. A. et al. 2011. Decreased production of neuronal NOS-derived hydrogen peroxide contributes to endothelial dysfunction in atherosclerosis. British journal of pharmacology, 164(6): 1738–1748.
Carey, R. M. and Padia, S. H. 2018. Physiology and Regulation of the Renin– Angiotensin–Aldosterone System. in Singh, A. K. and Williams, G. H. (eds) Textbook of Nephro-Endocrinology (Second Edition).Academic Press: 1–25.
Costa, E. D. et al. 2016. Neuronal Nitric Oxide Synthase in Vascular Physiology and Diseases. Frontiers in physiology. 7: 206.
De Champlain, J. et al. (2004) ‘Oxidative stress in hypertension.’, Clinical and experimental hypertension (New York, N.Y. : 1993), 26(7–8), pp. 593–601. Available at: https://doi.org/10.1081/ceh-200031904.
DiBona, G. F. 2013. Sympathetic Nervous System and Hypertension. Hypertension. 61(3): 556–560.
Di Giosia, P. et al. 2018. Gender Differences in Epidemiology, Pathophysiology, and Treatment of Hypertension. Current Atherosclerosis Reports. 20(3): 13.
Fujita, T. 2014. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. Journal of the American Society of Nephrology : JASN. 25(6): 1148–1155.
Fortuño, A. et al. 2004. Association of increased phagocytic NAD(P)H oxidase- dependent superoxide production with diminished nitric oxide generation in essential hypertension. Journal of hypertension. 22: 2169–2175.
Garcia, V. and Sessa, W. C. 2019. Endothelial NOS: perspective and recent developments. British journal of pharmacology. 176(2): 189–196.
Hamilton, C. A. et al. 2001. Superoxide Excess in Hypertension and Aging. Hypertension. 37(2): 529–534.
Hall, M. E. and Hall, J. E. 2018. Pathogenesis of Hypertension in Bakris, G. L. and Sorrentino, M. J. (eds) Hypertension: A Companion to Braunwald’s Heart Disease (Third Edition). Elsevier: 33–51.
Hermann, M., Flammer, A. and Lüscher, T. F. 2006. Nitric oxide in hypertension. Journal of clinical hypertension. United States. 8(12 Suppl 4): 17–29.
James, P. A. et al. 2014. 2014 evidence-based guideline for the management of high blood pressure in adults:report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. United States, 311(5): 507-20.
Kadir, A. 2016. Hubungan patofisiologi hipertensi dan hipertensi renal. Jurnal Ilmiah Kedokteran Wijaya Kusuma. vol. 5(1), 15-25. https://doi.org/10.30742/jikw.v5i1.2.
Kementerian Kesehatan RI. 2019. Laporan Riskesdas 2018. Jakarta: Badan Litbangkes, Kemenkes.
Kerkelä, R., Ulvila, J. and Magga, J. 2015. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. Journal of the American Heart Association. 4(10).
Khaddaj Mallat, R. et al. 2017. The vascular endothelium: A regulator of arterial tone and interface for the immune system. Critical reviews in clinical laboratory sciences. 54(7–8): 458—470.
Kohan, D. E. and Barton, M. 2014. Endothelin and endothelin antagonists in chronic kidney disease. Kidney International. 86(5): 896–904.
Kumar, R. et al. 2014. Interactions Between the Genes of Vasodilatation Pathways Influence Blood Pressure and Nitric Oxide Level in Hypertension. American journal of hypertension. 28.
Lazich, I. and Bakris, G. L. 2011. Endothelin antagonism in patients with resistant hypertension and hypertension nephropathy. Contributions to nephrology. Switzerland. 172: 223–234.
Lundberg, J. O., Weitzberg, E. and Gladwin, M. T. 2008. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics.Nature reviews. Drug discovery. England. 7(2): 156–167.
Mena, L. J. et al. 2017. 24‐Hour Blood Pressure Variability Assessed by Average Real Variability: A Systematic Review and Meta‐Analysis. Journal of the American Heart Association. American Heart Association, 6(10).
Mills, K. T., Stefanescu, A. and He, J. 2020. The global epidemiology of hypertension. Nature reviews. Nephrology. 16(4): 223–237.
Minhas, R., Bansal, Y. and Bansal, G. 2020. Inducible nitric oxide synthase inhibitors: A comprehensive update. Medicinal research reviews. United States. 40(3): 823–855.
Mukherjee, P. et al. 2014. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem. Soc. Rev. The Royal Society of Chemistry. 43(19): 6814–6838.
Nishi, E.E., Bergamaschi, C.T. and Campos, R.R. (2015) ‘The crosstalk between the kidney and the central nervous system: the role of renal nerves in blood pressure regulation’, Experimental Physiology, 100(5), pp. 479–484. Available at:
https://doi.org/https://doi.org/10.1113/expphysiol.2014.079889.
Oparil, S. et al. 2018. Hypertension. Nature reviews. Disease primers. 4: 18014.
Parati, G. et al. (2013) ‘Assessment and management of blood-pressure variability’, Nature reviews. Cardiology, 10(3), p. 143—155. Available at: https://doi.org/10.1038/nrcardio.2013.1.
Popolo, A. et al. 2013. Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free radical research. England. 47(5): 346–356.
Rajapakse, N. et al. 2012. Evidence that renal arginine transport is impaired in spontaneously hypertensive rats. American journal of physiology. Renal physiology. 302: F1554-62.
Rajapakse, N. W. and Mattson, D. L. 2013. Role of cellular L-arginine uptake and nitric oxide production on renal blood flow and arterial pressure regulation. Current Opinion in Nephrology and Hypertension.
Lippincott Williams and Wilkins. 22(1): 45–50.
Ramprasath, T. et al. 2015. Regression of oxidative stress by targeting eNOS and Nrf2/ARE signaling: a guided drug target for cardiovascular diseases. Current topics in medicinal chemistry. United Arab Emirates. 15(9): 857–871.
Rodrigo, R., González, J. and Paoletto, F. (2011) ‘The role of oxidative stress in the pathophysiology of hypertension.’, Hypertension research : official journal of the Japanese Society of Hypertension, 34(4), pp. 431–440. Available at: https://doi.org/10.1038/hr.2010.264.
Rodríguez-Iturbe, B. et al. 2014.Autoimmunity in the pathogenesis of hypertension. Nature reviews. Nephrology. England. 10(1): 56–62.
Schlossmann, J. and Hofmann, F. 2005. cGMP-dependent protein kinases in drug discovery. Drug discovery today. England. 10(9): 627–634.
Shiekh, G. A. et al. 2011. Reduced nitrate level in individuals with hypertension and diabetes. Journal of cardiovascular disease research. 2(3): 172—176.
Silva, G. C. et al. 2016. Endothelial dysfunction in DOCA-salt-hypertensive mice: role of neuronal nitric oxide synthase-derived hydrogen peroxide. Clinical science England. 130(11): 895–906.
Walsh, T., Donnelly, T. and Lyons, D. 2009. Impaired endothelial nitric oxide bioavailability: a common link between aging, hypertension, and atherogenesis. Journal of the American Geriatrics Society. United States. 57(1): 140–145.
Wang-Rosenke, Y., Neumayer, H.-H. and Peters, H. 2008. NO signaling through cGMP in renal tissue fibrosis and beyond: key pathway and novel therapeutic target. Current medicinal chemistry. United Arab Emirates, 15(14): 1396– 1406.
Xie, X. et al. (2017) ‘Endothelial nitric oxide synthase gene single nucleotide polymorphisms and the risk of hypertension: A meta-analysis involving 63,258 subjects’, Clinical and Experimental Hypertension, 39(2), pp. 175–182. Available at: https://doi.org/10.1080/10641963.2016.1235177.
Zalba, G. et al. 2005. NADPH oxidase-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension. Antioxidants & redox signaling. United States, 7(9–10): 1327–1336.
Zhang, Y.H. (2016) ‘Neuronal nitric oxide synthase in hypertension – an update’, Clinical Hypertension, 22(1), p. 20. Available at: https://doi.org/10.1186/s40885-016-0055-8.
Zhou, L. and Zhu, D.-Y. 2009. Neuronal nitric oxide synthase: Structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 20(4): 223–230.
DOI: https://doi.org/10.33024/jmm.v7i4.11500
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Medika Malahayati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.