STUDI BIOINFORMATIKA KONSTITUEN MAYOR Centella asiatica DALAM MEMODULASI KECEMASAN DAN DEPRESI
Abstract
Keywords
Full Text:
PDFReferences
Arenas, Y. M., Balzano, T., Ivaylova, G., Llansola, M., & Felipo, V. (2022). The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathology and Applied Neurobiology, 48(4), e12799. https://doi.org/10.1111/nan.12799
Campos, A. I., Byrne, E. M., Mitchell, B. L., Wray, N. R., Lind, P. A., Licinio, J., Medland, S. E., Martin, N. G., Hickie, I. B., & Rentería, M. E. (2022). Impact of CYP2C19 metaboliser status on SSRI response: A retrospective study of 9500 participants of the Australian Genetics of Depression Study. The Pharmacogenomics Journal, 22(2), Article 2. https://doi.org/10.1038/s41397-022-00267-7
Chand, S. P., & Arif, H. (2023). Depression. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK430847/
Chand, S. P., & Marwaha, R. (2023). Anxiety. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK470361/
Charlson, F. J., Baxter, A. J., Dua, T., Degenhardt, L., Whiteford, H. A., & Vos, T. (2015). Excess mortality from mental, neurological and substance use disorders in the Global Burden of Disease Study 2010. Epidemiology and Psychiatric Sciences, 24(2), 121–140. https://doi.org/10.1017/S2045796014000687
Chen, S. W., Wang, W. J., Li, W. J., Wang, R., Li, Y. L., Huang, Y. N., & Liang, X. (2006). Anxiolytic-like effect of asiaticoside in mice. Pharmacology Biochemistry and Behavior, 85(2), 339–344. https://doi.org/10.1016/j.pbb.2006.08.017
Curzytek, K., & Leśkiewicz, M. (2021). Targeting the CCL2-CCR2 axis in depressive disorders. Pharmacological Reports, 73(4), 1052–1062. https://doi.org/10.1007/s43440-021-00280-w
Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
Domhardt, M., Geßlein, H., von Rezori, R. E., & Baumeister, H. (2019). Internet- and mobile-based interventions for anxiety disorders: A meta-analytic review of intervention components. Depression and Anxiety, 36(3), 213–224. https://doi.org/10.1002/da.22860
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(Web Server issue), W32–W38. https://doi.org/10.1093/nar/gku293
Gohil, K. J., Patel, J. A., & Gajjar, A. K. (2010). Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian Journal of Pharmaceutical Sciences, 72(5), 546–556. https://doi.org/10.4103/0250-474X.78519
Jana, U., Sur, T. K., Maity, L. N., Debnath, P. K., & Bhattacharyya, D. (2010). A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal Medical College Journal: NMCJ, 12(1), 8–11.
Joas, E., Jonsson, L., Viktorin, A., Smedler, E., Pålsson, E., Goodwin, G. M., & Landén, M. (2023). Effect of CYP2C19 polymorphisms on antidepressant prescription patterns and treatment emergent mania in bipolar disorder. The Pharmacogenomics Journal, 23(1), 28–35. https://doi.org/10.1038/s41397-022-00294-4
Kalshetty, P., Aswar, U., Bodhankar, S., Sinnathambi, A., Mohan, V., & Thakurdesai, P. (2012). Antidepressant effects of standardized extract of Centella asiatica L in olfactory bulbectomy model. Biomedicine & Aging Pathology, 2(2), 48–53. https://doi.org/10.1016/j.biomag.2012.03.005
Leighton, S. P., Nerurkar, L., Krishnadas, R., Johnman, C., Graham, G. J., & Cavanagh, J. (2018). Chemokines in depression in health and in inflammatory illness: A systematic review and meta-analysis. Molecular Psychiatry, 23(1), 48–58. https://doi.org/10.1038/mp.2017.205
Li, D., Xie, Z., Zand, M., Fogg, T., & Dye, T. (2017). Bon-EV: An improved multiple testing procedure for controlling false discovery rates. BMC Bioinformatics, 18(1), 1. https://doi.org/10.1186/s12859-016-1414-x
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47(W1), W199–W205. https://doi.org/10.1093/nar/gkz401
Liu, Y., Tao, L., Fu, X., Zhao, Y., & Xu, X. (2013). BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway. Molecular Medicine Reports, 7(6), 1773–1778. https://doi.org/10.3892/mmr.2013.1433
Lund, C., Alem, A., Schneider, M., Hanlon, C., Ahrens, J., Bandawe, C., Bass, J., Bhana, A., Burns, J., Chibanda, D., Cowan, F., Davies, T., Dewey, M., Fekadu, A., Freeman, M., Honikman, S., Joska, J., Kagee, A., Mayston, R., Susser, E. (2015). Generating evidence to narrow the treatment gap for mental disorders in sub-Saharan Africa: Rationale, overview and methods of AFFIRM. Epidemiology and Psychiatric Sciences, 24(3), 233–240. https://doi.org/10.1017/S2045796015000281
Patel, P. H., Jha, A., & Chakraborthy, G. S. (2023). Role of Bioinformatics in Drug Design and Discovery. In M. Rudrapal & J. Khan (Eds.), CADD and Informatics in Drug Discovery (pp. 1–33). Springer Nature. https://doi.org/10.1007/978-981-99-1316-9_1
Romano, J. D., & Tatonetti, N. P. (2019). Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Frontiers in Genetics, 10. https://www.frontiersin.org/articles/10.3389/fgene.2019.00368
Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T. I., Dahary, D., Fishilevich, S., & Lancet, D. (2021). The GeneCards Suite. In I. Abugessaisa & T. Kasukawa (Eds.), Practical Guide to Life Science Databases (pp. 27–56). Springer Nature. https://doi.org/10.1007/978-981-16-5812-9_2
Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074
Szklarczyk, D., Morris, J., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N., Roth, A., Bork, P., Jensen, L., & von Mering, C. (2016). The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45. https://doi.org/10.1093/nar/gkw937
Szklarczyk, D., Santos, A., von Mering, C., Jensen, L. J., Bork, P., & Kuhn, M. (2016). STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Research, 44(D1), D380–D384. https://doi.org/10.1093/nar/gkv1277
Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International Journal of Molecular Sciences, 19(6), Article 6. https://doi.org/10.3390/ijms19061578
Wagenaar, B. H., Stergachis, A., Rao, D., Hoek, R., Cumbe, V., Napúa, M., & Sherr, K. (2015). The availability of essential medicines for mental healthcare in Sofala, Mozambique. Global Health Action, 8, 27942. https://doi.org/10.3402/gha.v8.27942
Wang, L., Guo, T., Guo, Y., & Xu, Y. (2020). Asiaticoside produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice, involving reversion of inflammation and the PKA/pCREB/BDNF signaling pathway. Molecular Medicine Reports, 22(3), 2364–2372. https://doi.org/10.3892/mmr.2020.11305
WHO. (2022). Mental disorders. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/mental-disorders
Wooller, S. K., Benstead-Hume, G., Chen, X., Ali, Y., & Pearl, F. M. G. (2017). Bioinformatics in translational drug discovery. Bioscience Reports, 37(4), BSR20160180. https://doi.org/10.1042/BSR20160180
Wu, N., Sun, X., Zhou, C., Yan, J., & Cheng, C. (2023). Neuroblasts migration under control of reactive astrocyte-derived BDNF: A promising therapy in late neurogenesis after traumatic brain injury. Stem Cell Research & Therapy, 14(1), 2. https://doi.org/10.1186/s13287-022-03232-0
Yang, Y., Long, X., Li, K., Li, G., Yu, X., Wen, P., Luo, J., Tian, X., & Zhao, J. (2021). Development and validation of an oxidative stress—Associated prognostic risk model for melanoma. PeerJ, 9, e11258. https://doi.org/10.7717/peerj.11258
DOI: https://doi.org/10.33024/jmm.v7i4.12752
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Medika Malahayati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.