STUDI BIOINFORMATIKA KONSTITUEN MAYOR Centella asiatica DALAM MEMODULASI KECEMASAN DAN DEPRESI

Vania Amanda Samor, Rachmi Nurkhalika, Yovita Endah Lestari, Saddam Husein

Abstract


Konstituen mayor Centella asiatica (CA) memiliki banyak manfaat farmakologis dan diduga dapat mempengaruhi kondisi kecemasan dan depresi, namun jalur persinyalan molekuler belum sepenuhnya dipahami. Studi ini bertujuan untuk mengeksplorasi target potensial mekanisme konstituen mayor melalui pendekatan bioinformatika. Prediksi protein yang dimodulasi oleh konstituen mayor CA dilakukan dengan SwissTargetPrediction 2019 dan STITCH 5.0 yang kemudian dilakukan analisis irisan dengan gen depresi dan kecemasan yang diperoleh dari GeneCards. Analisis interaksi protein-protein dilakukan dengan STRING 11.5 dan ditelusuri ketermungkinan jalur persinyalan gen dengan WebGestalt 2019. Melalui studi diketahui bahwa konstituen mayor CA (asiaticoside) berpotensi memodulasi kondisi kecemasan dan depresi melalui jalur persinyalan BDNF. Studi lebih lanjut diperlukan untuk mengeksplorasi potensi terapi konstituen mayor CA dengan model depresi dan kecemasan.

Keywords


centella asiatica, depresi, kecemasan, studi bioinformatika

Full Text:

PDF

References


Arenas, Y. M., Balzano, T., Ivaylova, G., Llansola, M., & Felipo, V. (2022). The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathology and Applied Neurobiology, 48(4), e12799. https://doi.org/10.1111/nan.12799

Campos, A. I., Byrne, E. M., Mitchell, B. L., Wray, N. R., Lind, P. A., Licinio, J., Medland, S. E., Martin, N. G., Hickie, I. B., & Rentería, M. E. (2022). Impact of CYP2C19 metaboliser status on SSRI response: A retrospective study of 9500 participants of the Australian Genetics of Depression Study. The Pharmacogenomics Journal, 22(2), Article 2. https://doi.org/10.1038/s41397-022-00267-7

Chand, S. P., & Arif, H. (2023). Depression. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK430847/

Chand, S. P., & Marwaha, R. (2023). Anxiety. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK470361/

Charlson, F. J., Baxter, A. J., Dua, T., Degenhardt, L., Whiteford, H. A., & Vos, T. (2015). Excess mortality from mental, neurological and substance use disorders in the Global Burden of Disease Study 2010. Epidemiology and Psychiatric Sciences, 24(2), 121–140. https://doi.org/10.1017/S2045796014000687

Chen, S. W., Wang, W. J., Li, W. J., Wang, R., Li, Y. L., Huang, Y. N., & Liang, X. (2006). Anxiolytic-like effect of asiaticoside in mice. Pharmacology Biochemistry and Behavior, 85(2), 339–344. https://doi.org/10.1016/j.pbb.2006.08.017

Curzytek, K., & Leśkiewicz, M. (2021). Targeting the CCL2-CCR2 axis in depressive disorders. Pharmacological Reports, 73(4), 1052–1062. https://doi.org/10.1007/s43440-021-00280-w

Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382

Domhardt, M., Geßlein, H., von Rezori, R. E., & Baumeister, H. (2019). Internet- and mobile-based interventions for anxiety disorders: A meta-analytic review of intervention components. Depression and Anxiety, 36(3), 213–224. https://doi.org/10.1002/da.22860

Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(Web Server issue), W32–W38. https://doi.org/10.1093/nar/gku293

Gohil, K. J., Patel, J. A., & Gajjar, A. K. (2010). Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian Journal of Pharmaceutical Sciences, 72(5), 546–556. https://doi.org/10.4103/0250-474X.78519

Jana, U., Sur, T. K., Maity, L. N., Debnath, P. K., & Bhattacharyya, D. (2010). A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal Medical College Journal: NMCJ, 12(1), 8–11.

Joas, E., Jonsson, L., Viktorin, A., Smedler, E., Pålsson, E., Goodwin, G. M., & Landén, M. (2023). Effect of CYP2C19 polymorphisms on antidepressant prescription patterns and treatment emergent mania in bipolar disorder. The Pharmacogenomics Journal, 23(1), 28–35. https://doi.org/10.1038/s41397-022-00294-4

Kalshetty, P., Aswar, U., Bodhankar, S., Sinnathambi, A., Mohan, V., & Thakurdesai, P. (2012). Antidepressant effects of standardized extract of Centella asiatica L in olfactory bulbectomy model. Biomedicine & Aging Pathology, 2(2), 48–53. https://doi.org/10.1016/j.biomag.2012.03.005

Leighton, S. P., Nerurkar, L., Krishnadas, R., Johnman, C., Graham, G. J., & Cavanagh, J. (2018). Chemokines in depression in health and in inflammatory illness: A systematic review and meta-analysis. Molecular Psychiatry, 23(1), 48–58. https://doi.org/10.1038/mp.2017.205

Li, D., Xie, Z., Zand, M., Fogg, T., & Dye, T. (2017). Bon-EV: An improved multiple testing procedure for controlling false discovery rates. BMC Bioinformatics, 18(1), 1. https://doi.org/10.1186/s12859-016-1414-x

Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47(W1), W199–W205. https://doi.org/10.1093/nar/gkz401

Liu, Y., Tao, L., Fu, X., Zhao, Y., & Xu, X. (2013). BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway. Molecular Medicine Reports, 7(6), 1773–1778. https://doi.org/10.3892/mmr.2013.1433

Lund, C., Alem, A., Schneider, M., Hanlon, C., Ahrens, J., Bandawe, C., Bass, J., Bhana, A., Burns, J., Chibanda, D., Cowan, F., Davies, T., Dewey, M., Fekadu, A., Freeman, M., Honikman, S., Joska, J., Kagee, A., Mayston, R., Susser, E. (2015). Generating evidence to narrow the treatment gap for mental disorders in sub-Saharan Africa: Rationale, overview and methods of AFFIRM. Epidemiology and Psychiatric Sciences, 24(3), 233–240. https://doi.org/10.1017/S2045796015000281

Patel, P. H., Jha, A., & Chakraborthy, G. S. (2023). Role of Bioinformatics in Drug Design and Discovery. In M. Rudrapal & J. Khan (Eds.), CADD and Informatics in Drug Discovery (pp. 1–33). Springer Nature. https://doi.org/10.1007/978-981-99-1316-9_1

Romano, J. D., & Tatonetti, N. P. (2019). Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Frontiers in Genetics, 10. https://www.frontiersin.org/articles/10.3389/fgene.2019.00368

Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T. I., Dahary, D., Fishilevich, S., & Lancet, D. (2021). The GeneCards Suite. In I. Abugessaisa & T. Kasukawa (Eds.), Practical Guide to Life Science Databases (pp. 27–56). Springer Nature. https://doi.org/10.1007/978-981-16-5812-9_2

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074

Szklarczyk, D., Morris, J., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N., Roth, A., Bork, P., Jensen, L., & von Mering, C. (2016). The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45. https://doi.org/10.1093/nar/gkw937

Szklarczyk, D., Santos, A., von Mering, C., Jensen, L. J., Bork, P., & Kuhn, M. (2016). STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Research, 44(D1), D380–D384. https://doi.org/10.1093/nar/gkv1277

Thomford, N. E., Senthebane, D. A., Rowe, A., Munro, D., Seele, P., Maroyi, A., & Dzobo, K. (2018). Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International Journal of Molecular Sciences, 19(6), Article 6. https://doi.org/10.3390/ijms19061578

Wagenaar, B. H., Stergachis, A., Rao, D., Hoek, R., Cumbe, V., Napúa, M., & Sherr, K. (2015). The availability of essential medicines for mental healthcare in Sofala, Mozambique. Global Health Action, 8, 27942. https://doi.org/10.3402/gha.v8.27942

Wang, L., Guo, T., Guo, Y., & Xu, Y. (2020). Asiaticoside produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice, involving reversion of inflammation and the PKA/pCREB/BDNF signaling pathway. Molecular Medicine Reports, 22(3), 2364–2372. https://doi.org/10.3892/mmr.2020.11305

WHO. (2022). Mental disorders. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/mental-disorders

Wooller, S. K., Benstead-Hume, G., Chen, X., Ali, Y., & Pearl, F. M. G. (2017). Bioinformatics in translational drug discovery. Bioscience Reports, 37(4), BSR20160180. https://doi.org/10.1042/BSR20160180

Wu, N., Sun, X., Zhou, C., Yan, J., & Cheng, C. (2023). Neuroblasts migration under control of reactive astrocyte-derived BDNF: A promising therapy in late neurogenesis after traumatic brain injury. Stem Cell Research & Therapy, 14(1), 2. https://doi.org/10.1186/s13287-022-03232-0

Yang, Y., Long, X., Li, K., Li, G., Yu, X., Wen, P., Luo, J., Tian, X., & Zhao, J. (2021). Development and validation of an oxidative stress—Associated prognostic risk model for melanoma. PeerJ, 9, e11258. https://doi.org/10.7717/peerj.11258




DOI: https://doi.org/10.33024/jmm.v7i4.12752

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Medika Malahayati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

PRODI KEDOKTERAN

FAKULTAS KEDOKTERAN UNIVERSITAS MALAHAYATI