Alpha Klotho: Peran Biomolekuler dan Potensinya Sebagai Biomarker Luaran Klinis Dalam Pneumonia Geriatri

Dicky Wahyudi, Diniwati Mukhtar, Tjandra Yoga Aditama, Himmi Marsiati

Abstract


Pada populasi geriatri, pneumonia menjadi lebih berisiko karena dikaitkan dengan perubahan fisiologis yang mengakibatkan penurunan fungsi paru, berkurangnya regenerasi, remodeling saluran napas, melemahnya respons imun bawaan dan adaptif, peningkatan kerentanan hingga adanya kemungkinan komorbid yang mempersulit pemulihan. Salah satu protein sitoprotektif yang esensial dalam mencegah kerusakan paru adalah α-klotho. α-Klotho utamanya diproduksi pada ginjal merupakan salah satu hormon endokrin yang sangat penting untuk pemeliharaan dan perlindungan jaringan. α-Klotho berperan dalam mencegah penuaan, memperlambat tingkat degenerasi multi-organ prematur, menurunkan stres oksidatif, dan menekan kerusakan jaringan yang diperantarai oleh inflamasi. Efek tersebut diperoleh melaui inhibisi pada jalur transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt dan NF-κB. Ekspresi α-klotho menurun seiring bertambahnya usia. Penurunan ekspresi α-klotho pada paru dikaitkan dengan peningkatan stres oksidatif, inflamasi, dan apoptosis serta penurunan fungsi pembersihan mukosiliar dan peningkatan laju pelebaran alveolus. Hingga saat ini belum ada penelitian khusus yang meneliti ekspresi ɑ-klotho pada pneumonia geriatri. Namun, penelitian terbaru mengungkap potensi protein ini sebagai biomarker. Ditemukan bahwa kadar ɑ-klotho memiliki hubungan negatif yang signifikan terhadap berbagai biomarker inflamasi akut yang merupakan komponen penting dalam patogenesis pneumonia. Potensi α-klotho sebagai modulator respon inflamasi menunjukkan kemungkinan untuk digunakan sebagai biomarker yang mewakili kondisi pneumonia pada populasi lanjut usia dalam memprediksi luaran klinis.


Keywords


Alpha Klotho; Biomarker; Pneumonia

Full Text:

PDF

References


Abraham, C. R., & Li, A. (2022). Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Research Reviews, 82, 1–21. https://doi.org/10.1016/j.arr.2022.101766

Anour, R., Andrukhova, O., Ritter, E., Zeitz, U., & Erben, R. G. (2012). Klotho lacks a vitamin D independent physiological role in glucose homeostasis, bone turnover, and steady-state PTH secretion in vivo. PLoS ONE, 7(2), e31376. https://doi.org/10.1371/journal.pone.0031376

Araneda, O. F., & Tuesta, M. (2012). Lung oxidative damage by hypoxia. Oxidative Medicine and Cellular Longevity, 1(1), 1–18. https://doi.org/10.1155/2012/856918

Barker, S. L., Pastor, J., Carranza, D., Quiones, H., Griffith, C., Goetz, R., Mohammadi, M., Ye, J., Zhang, J., Hu, M. C., Kuro-o, M., Moe, O. W., & Sidhu, S. S. (2015). The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrology Dialysis Transplantation, 30(2), 223–233. https://doi.org/10.1093/ndt/gfu291

Bian, A., Neyra, J. A., Zhan, M., & Hu, M. C. (2015). Klotho, stem cells, and aging. Clinical Interventions in Aging, 10, 1233–1243. https://doi.org/10.2147/CIA.S84978

Blake, D. J., Reese, C. M., Garcia, M., Dahlmann, E. A., & Dean, A. (2015). Soluble extracellular Klotho decreases sensitivity to cigarette smoke induced cell death in human lung epithelial cells. Toxicology in Vitro, 29(7), 1647–1652. https://doi.org/10.1016/j.tiv.2015.06.019

Bowdish, D. M. E. (2019). The Aging Lung: Is Lung Health Good Health for Older Adults? Chest, 155(2), 391–400. https://doi.org/10.1016/j.chest.2018.09.003

Buendía, P., Carracedo, J., Soriano, S., Madueño, J. A., Ortiz, A., Martín-Malo, A., Aljama, P., & Ramírez, R. (2014). Klotho Prevents NFκB Translocation and Protects Endothelial Cell from Senescence Induced by Uremia. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 70(10), 1198–1209.

https://doi.org/10.1093/gerona/glu170

Chen, B., Liu, W., Chen, Y., She, Q., Li, M., Zhao, H. Y., Zhao, W., Peng, Z., & Wu, J. (2021). Effect of Poor Nutritional Status and Comorbidities on the Occurrence and Outcome of Pneumonia in Elderly Adults. Frontiers in Medicine, 8, 719530. https://doi.org/10.3389/fmed.2021.719530

Chen, G., Liu, Y., Goetz, R., Fu, L., Jayaraman, S., Hu, M. C., Moe, O. W., Liang, G., Li, X., & Mohammadi, M. (2018). α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature, 553(7689), 461–466. https://doi.org/10.1038/nature25451

Chen, P., Tang, Y., Luo, L., Chen, H., & He, X. (2023). Lower serum Klotho level and higher systemic immune-inflammation index: an inverse correlation. BMC Geriatrics, 23(1), 650. https://doi.org/10.1186/s12877-023-04349-4

Cho, S. J., & Stout-Delgado, H. W. (2020). Aging and Lung Disease. Annual Review of Physiology, 82, 433–459. https://doi.org/10.1146/annurev-physiol-021119-034610

Dalton, G. D., Xie, J., An, S. W., & Huang, C. L. (2017). New insights into the mechanism of action of soluble klotho. Frontiers in Endocrinology, 8, 300038. https://doi.org/10.3389/fendo.2017.00323

de Streel, G., & Lucas, S. (2021). Targeting immunosuppression by TGF-β1 for cancer immunotherapy. Biochemical Pharmacology, 192, 114697. https://doi.org/10.1016/j.bcp.2021.114697

Dinkova-Kostova, A. T., Kostov, R. V., & Kazantsev, A. G. (2018). The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS Journal, 285(19), 3576–3590.

https://doi.org/10.1111/febs.14379

Doi, S., Zou, Y., Togao, O., Pastor, J. V., John, G. B., Wang, L., Shiizaki, K., Gotschall, R., Schiavi, S., Yorioka, N., Takahashi, M., Boothman, D. A., & Kuro-o, M. (2011). Klotho inhibits transforming growth factor-β1 (TGF-β1) signaling and suppresses renal fibrosis and cancer metastasis in mice. Journal of Biological Chemistry, 286(10), 8655–

https://doi.org/10.1074/jbc.M110.174037

Drüeke, T. B., & Massy, Z. A. (2013). Circulating Klotho levels: Clinical relevance and relationship with tissue Klotho expression. Kidney International, 83(1), 13–15. https://doi.org/10.1038/ki.2012.370

Erben, R. G. (2018). Physiological actions of fibroblast growth factor-23. Frontiers in Endocrinology, 9, 372269. https://doi.org/10.3389/fendo.2018.00267

Espuch-Oliver, A., Vázquez-Lorente, H., Jurado-Fasoli, L., de Haro-Muñoz, T., Díaz-Alberola, I., López-Velez, M. D. S., de Haro-Romero, T., Castillo, M. J., & Amaro-Gahete, F. J. (2022). References Values of Soluble α-Klotho Serum Levels Using an Enzyme-Linked Immunosorbent Assay in Healthy Adults Aged 18–85 Years. Journal of Clinical Medicine, 11(9), 2415. https://doi.org/10.3390/jcm11092415

Fukuchi, Y. (2009). The aging lung and chronic obstructive pulmonary disease: Similarity and difference. Proceedings of the American Thoracic Society, 6(7), 570–572. https://doi.org/10.1513/pats.200909-099RM

Fung, T. Y., Iyaswamy, A., Sreenivasmurthy, S. G., Krishnamoorthi, S., Guan, X. J., Zhu, Z., Su, C. F., Liu, J., Kan, Y., Zhang, Y., Wong, H. L. X., & Li, M. (2022). Klotho an Autophagy Stimulator as a Potential Therapeutic Target for Alzheimer’s Disease: A Review. In Biomedicines (Vol. 10, Issue 3). MDPI. https://doi.org/10.3390/biomedicines10030705

Gao, W., Guo, L., Yang, Y., Wang, Y., Xia, S., Gong, H., Zhang, B. K., & Yan, M. (2022). Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.809952

Gao, W., Yuan, C., Zhang, J., Li, L., Yu, L., Wiegman, C. H., Barnes, P. J., Adcock, I. M., Huang, M., & Yao, X. (2015). Klotho expression is reduced in COPD airway epithelial cells: Effects on inflammation and oxidant injury. Clinical Science, 129(12), 1011–1023. https://doi.org/10.1042/CS20150273

Garth, J., Easter, M., Skylar Harris, E., Sailland, J., Kuenzi, L., Chung, S., Dennis, J. S., Baumlin, N., Adewale, A. T., Rowe, S. M., King, G., Faul, C., Barnes, J. W., Salathe, M., & Krick, S. (2020). The Effects of the Anti-aging Protein Klotho on Mucociliary Clearance. Frontiers in Medicine, 6, 339. https://doi.org/10.3389/fmed.2019.00339

Gazdhar, A., Ravikumar, P., Pastor, J., Heller, M., Ye, J., Zhang, J., Moe, O. W., Geiser, T., & Hsia, C. C. W. (2018). Alpha-Klotho Enrichment in Induced Pluripotent Stem Cell Secretome Contributes to Antioxidative Protection in Acute Lung Injury. Stem Cells, 36(4), 616–625. https://doi.org/10.1002/stem.2752

Guo, Y., Zhuang, X., Huang, Z., Zou, J., Yang, D., Hu, X., Du, Z., Wang, L., & Liao, X. (2018). Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1864(1), 238–251. https://doi.org/10.1016/j.bbadis.2017.09.029

Haga, M., & Okada, M. (2022). Systems approaches to investigate the role of NF-κB signaling in aging. Biochemical Journal, 479(2), 161–183. https://doi.org/10.1042/BCJ20210547

Hayat, R., Manzoor, M., & Hussain, A. (2022). Wnt signaling pathway: A comprehensive review. Cell Biology International, 46(6), 863–877.

Hsia, C. C. W., Ravikumar, P., & Ye, J. (2017). Acute lung injury complicating acute kidney injury: A model of endogenous αKlotho deficiency and distant organ dysfunction. Bone, 100, 100–109. https://doi.org/10.1016/j.bone.2017.03.047

Hu, M. C., Shi, M., Zhang, J., Quĩones, H., Kuro-O, M., & Moe, O. W. (2010). Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney International, 78(12), 1240–1251. https://doi.org/10.1038/ki.2010.328

Hu, M. C., Shiizaki, K., Kuro-O, M., & Moe, O. W. (2013). Fibroblast growth factor 23 and klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annual Review of Physiology, 75, 503–533. https://doi.org/10.1146/annurev-physiol-030212-183727

Huang, C. L. (2010). Regulation of ion channels by secreted Klotho: Mechanisms and implications. Kidney International, 77(10), 855–860. https://doi.org/10.1038/ki.2010.73

Imura, A., Iwano, A., Tohyama, O., Tsuji, Y., Nozaki, K., Hashimoto, N., Fujimori, T., & Nabeshima, Y. I. (2004). Secreted Klotho protein in sera and CSF: Implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Letters, 565(1–3), 143–147. https://doi.org/10.1016/j.febslet.2004.03.090

Ishii, M., Yamaguchi, Y., Yamamoto, H., Hanaoka, Y., & Ouchi, Y. (2008). Airspace Enlargement With Airway Cell Apoptosis in Klotho Mice: A Model of Aging Lung. Journal of Gerontology: BIOLOGICAL SCIENCES, 63A(12), 1289–1298. http://biomedgerontology.oxfordjournals.org/

Johnson, S. C. (2018). Nutrient sensing, signaling and ageing: The role of IGF-1 and mTOR in ageing and age-related disease. In Subcellular Biochemistry (Vol. 90, pp. 49–97). Springer New York. https://doi.org/10.1007/978-981-13-2835-0_3

Jung Oh, H., Young Nam, B., Wu, M., Kim, S., Park, J., Tak Park, J., Yoo, T.-H., Kang, S.-W., & Hyeok Han, S. (2018). Klotho plays a protective role against glomerular hypertrophy in a cell cycle-dependent manner in diabetic nephropathy. American Journal of Physiology-Renal Physiology, 315(4), 791–805. www.physiology.org/journal/ajprenal

Kim, J.-H., Hwang, K.-H., Park, K.-S., Kong, I. D., & Cha, S.-K. (2015). Biological Role of Anti-aging Protein Klotho. Journal of Lifestyle Medicine, 5(1), 1–6. https://doi.org/10.15280/jlm.2015.5.1.1

Kresovich, J. K., & Bulka, C. M. (2022). Low Serum Klotho Associated with All-cause Mortality among a Nationally Representative Sample of American Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 77(3), 452–456. https://doi.org/10.1093/gerona/glab308

Krick, S., Grabner, A., Baumlin, N., Yanucil, C., Helton, S., Grosche, A., Sailland, J., Geraghty, P., Viera, L., Russell, D. W., Wells, J. M., Xu, X., Gaggar, A., Barnes, J., King, G. D., Campos, M., Faul, C., & Salathe, M. (2018). Fibroblast growth factor 23 and Klotho contribute to airway inflammation. European Respiratory Journal, 52(1), 1–23. https://doi.org/10.1183/13993003.00236-2018

Kuro, M. (2021). Klotho and calciprotein particles as therapeutic targets against accelerated ageing. Clinical Science, 135(15), 1915–1927. https://doi.org/10.1042/CS20201453

Kuro-o, M. (2008). Klotho as a regulator of oxidative stress and

senescence. Biological Chemistry, 389(3), 233–241. https://doi.org/10.1515/BC.2008.028

Kuro-o, M. (2019). The Klotho proteins in health and disease. Nature Reviews Nephrology, 15(1), 27–44. https://doi.org/10.1038/s41581-018-0078-3

Kurosu, H., Ogawa, Y., Miyoshi, M., Yamamoto, M., Nandi, A., Rosenblatt, K. P., Baum, M. G., Schiavi, S., Hu, M. C., Moe, O. W., & Kuro-o, M. (2006). Regulation of fibroblast growth factor-23 signaling by Klotho. Journal of Biological Chemistry, 281(10), 6120–6123. https://doi.org/10.1074/jbc.C500457200

Li, L., Wang, Y., Gao, W., Yuan, C., Zhang, S., Zhou, H., Huang, M., & Yao, X. (2015). Klotho reduction in alveolar macrophages contributes to cigarette smoke extract-induced inflammation in chronic obstructive pulmonary disease. Journal of Biological Chemistry, 290(46), 27890–27900. https://doi.org/10.1074/jbc.M115.655431

Li, X. J., Lu, P., Shao, X. F., Jiang, T., Liu, F., & Li, G. (2021). Klotho regulates epithelial-to-Mesenchymal transition in vitro via WNT/β-catenin pathway and attenuates chronic allograft dysfunction in a rat renal transplant model. Annals of Transplantation, 26, e930066-1. https://doi.org/10.12659/AOT.930066

Lin, W., Wu, X., Wen, J., Fei, Y., Wu, J., Li, X., Zhang, Q., Dong, Y., Xu, T., Fan, Y., & Wang, N. (2021). Nicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury. Nutrition, 91–92, 111376. https://doi.org/10.1016/j.nut.2021.111376

Maekawa, Y., Ishikawa, K., Yasuda, O., Oguro, R., Hanasaki, H., Kida, I., Takemura, Y., Ohishi, M., Katsuya, T., & Rakugi, H. (2009). Klotho suppresses TNF-α-induced expression of adhesion molecules in the endothelium and attenuates NF-κB activation. Endocrine, 35(3), 341–346. https://doi.org/10.1007/s12020-009-9181-3

Maizels, R. M. (2021). The multi-faceted roles of TGF-β in regulation of immunity to infection. In Advances in Immunology (Vol. 150, pp. 1–42). Academic Press Inc. https://doi.org/10.1016/bs.ai.2021.05.001

Mathew, R., Pal Bhadra, M., & Bhadra, U. (2017). Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology, 18(1), 35–53. https://doi.org/10.1007/s10522-016-9670-8

Mikuła-Pietrasik, J., Rutecki, S., & Książek, K. (2022). The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cance. Cellular and Molecular Life Sciences , 79(4), 196.

Moreno, J. A., Izquierdo, M. C., Sanchez-Niño, M. D., Suárez-Alvarez, B., Lopez-Larrea, C., Jakubowski, A., Blanco, J., Ramirez, R., Selgas, R., Ruiz-Ortega, M., Egido, J., Ortiz, A., & Sanz, A. B. (2011). The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. Journal of the American Society of

Nephrology, 22(7), 1315–1325. https://doi.org/10.1681/ASN.2010101073

Neyra, J. A., Moe, O. W., Pastor, J., Gianella, F., Sidhu, S. S., Sarnak, M. J., Ix, J. H., & Drew, D. A. (2019). Performance of soluble Klotho assays in clinical samples of kidney disease. Clinical Kidney Journal, 13(2), 235–244. https://doi.org/10.1093/ckj/sfz085

Olauson, H., Mencke, R., Hillebrands, J. L., & Larsson, T. E. (2017). Tissue expression and source of circulating αKlotho. Bone, 100, 19–35. https://doi.org/10.1016/j.bone.2017.03.043

Polat, Y., Yalcin, A., Yazihan, N., Bahsi, R., Mut Surmeli, D., Akdas, S., Aras, S., & Varli, M. (2020). The relationship between frailty and serum alpha klotho levels in geriatric patients. Archives of Gerontology and Geriatrics, 91, 104225. https://doi.org/10.1016/j.archger.2020.104225

Poljšak, B., & Fink, R. (2014). The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. Oxidative Medicine and Cellular Longevity, 1–22. https://doi.org/10.1155/2014/671539

Pratsinis, H., Mavrogonatou, E., & Kletsas, D. (2017). TGF-β in Development and Ageing. In Rattan (Ed.), Hormones in Ageing and Longevity (11th ed., pp. 127–148). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-63001-4_7

Prud’homme, G. J., Kurt, M., & Wang, Q. (2022). Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Frontiers in Aging, 3(931331), 1–24. https://doi.org/10.3389/fragi.2022.931331

Raimann, A., Ertl, D. A., Helmreich, M., Sagmeister, S., Egerbacher, M., & Haeusler, G. (2013). Fibroblast growth factor 23 and Klotho are present in the growth plate. Connective Tissue Research, 54(2), 108–117. https://doi.org/10.3109/03008207.2012.753879

Rausch, S., & Föller, M. (2022). The regulation of FGF23 under physiological and pathophysiological conditions. Pflugers Archiv European Journal of Physiology, 474(3), 281–292. https://doi.org/10.1007/s00424-022-02668-w

Ravikumar, P., Ye, J., Zhang, J., Pinch, S. N., Hu, M. C., Kuro-o, M., Hsia, C. C. W., & Moe, O. W. (2014). α -klotho protects against oxidative damage in pulmonary epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 307(7), L566–L575. https://doi.org/10.1152/ajplung.00306.2013

Rim, E. Y., Clevers, H., & Nusse, R. (2022). The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators. Annual Review of Biochemistry, 91(1), 571–598. https://doi.org/10.1146/annurev-biochem-040320

Roberti, A., Chaffey, L. E., & Greaves, D. R. (2022). NF-κB Signaling and Inflammation—Drug Repurposing to Treat Inflammatory Disorders? In Biology (Vol. 11, Issue 3). MDPI. https://doi.org/10.3390/biology11030372

Sato, S., Kawamata, Y., Takahashi, A., Imai, Y., Hanyu, A., Okuma, A., Takasugi, M., Yamakoshi, K., Sorimachi, H., Kanda, H., Ishikawa, Y., Sone, S., Nishioka, Y., Ohtani, N., & Hara, E. (2015). Ablation of the p16 INK4a tumour suppressor reverses ageing phenotypes of klotho mice. Nature Communications, 6(1), 7035. https://doi.org/10.1038/ncomms8035

Schneider, J. L., Rowe, J. H., Garcia-de-Alba, C., Kim, C. F., Sharpe, A. H., & Haigis, M. C. (2021). The aging lung: Physiology, disease, and immunity. Cell, 184(8), 1990–2019. https://doi.org/10.1016/j.cell.2021.03.005

Shin, I. S., Shin, H. K., Kim, J. C., & Lee, M. Y. (2015). Role of Klotho, an antiaging protein, in pulmonary fibrosis. Archives of Toxicology, 89(5), 785–795. https://doi.org/10.1007/s00204-014-1282-y

Tang, L., Xu, Y., Wei, Y., & He, X. (2017). Uric acid induces the expression of TNF-α via the ROS-MAPK-NF-κB signaling pathway in rat vascular smooth muscle cells. Molecular Medicine Reports, 16(5), 6928–6933. https://doi.org/10.3892/mmr.2017.7405

Tominaga, K., & Suzuki, H. I. (2019). TGF-β signaling in cellular senescence and aging-related pathology. International Journal of Molecular Sciences, 20(20). https://doi.org/10.3390/ijms20205002

Typiak, M., & Piwkowska, A. (2021). Antiinflammatory actions of klotho: Implications for therapy of diabetic nephropathy. International Journal of Molecular Sciences, 22(2), 1–15. https://doi.org/10.3390/ijms22020956

Urakawa, I., Yamazaki, Y., Shimada, T., Iijima, K., Hasegawa, H., Okawa, K., Fujita, T., Fukumoto, S., & Yamashita, T. (2006). Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature, 444(7120), 770–774. https://doi.org/10.1038/nature05315

Usuda, J., Ichinose, S., Ishizumi, T., Ohtani, K., Inoue, T., Saji, H., Kakihana, M., Kajiwara, N., Uchida, O., Nomura, M., Ohira, T., & Ikeda, N. (2011). Klotho predicts good clinical outcome in patients with limited-disease small cell lung cancer who received surgery. Lung Cancer, 74(2), 332–337. https://doi.org/10.1016/j.lungcan.2011.03.004

Usuda, J., Ichinose, S., Ishizumi, T., Ohtani, K., Inoue, T., Saji, H., Kakihana, M., Kajiwara, N., Uchida, O., Nomura, M., Tsutsui, H., Ohira, T., & Ikeda, N. (2011). Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer, 72(3), 355–359. https://doi.org/10.1016/j.lungcan.2010.10.008

Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 10(9), 3886–3907. https://doi.org/10.3390/ijerph10093886

von Frieling, J., & Roeder, T. (2020). Factors that affect the translation of dietary restriction into a longer life. IUBMB Life, 72(5), 814–824. https://doi.org/10.1002/iub.2224

Wang, Y., & Sun, Z. (2009). Current understanding of klotho. Ageing Research Reviews, 8(1), 43–51. https://doi.org/10.1016/j.arr.2008.10.002

Wu, S. E., & Chen, W. L. (2022). Soluble klotho as an effective biomarker to characterize inflammatory states. Annals of Medicine, 54(1), 1520–1529. https://doi.org/10.1080/07853890.2022.2077428

Xia, W., Zhang, A., Jia, Z., Gu, J., & Chen, H. (2016). Klotho contributes to pravastatin effect on suppressing il-6 production in endothelial cells. Mediators of Inflammation, 2016, 1–6. https://doi.org/10.1155/2016/2193210

Xie, B., Zhou, J., Shu, G., Liu, D.-C., Zhou, J., Chen, J., & Yuan, L. (2013). Restoration of klotho gene expression induces apoptosis and autophagy in gastric cancer cells: tumor suppressive role of klotho in gastric cancer. Cancer Cell International, 13(18), 1–10. http://www.cancerci.com/content/13/1/18

Xie, J., Cha, S. K., An, S. W., Kuro-O, M., Birnbaumer, L., & Huang, C. L. (2012). Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nature Communications, 3(1), 1238. https://doi.org/10.1038/ncomms2240

Xu, Y., & Sun, Z. (2015). Molecular basis of klotho: From gene to function in aging. Endocrine Reviews, 36(2), 174–193. https://doi.org/10.1210/er.2013-1079

Yamamoto, M., Clark, J. D., Pastor, J. V., Gurnani, P., Nandi, A., Kurosu, H., Miyoshi, M., Ogawa, Y., Castrillon, D. H., Rosenblatt, K. P., & Kuro-O, M. (2005). Regulation of oxidative stress by the anti-aging hormone klotho. Journal of Biological Chemistry, 280(45), 38029–38034. https://doi.org/10.1074/jbc.M509039200

Yamauchi, M., Hirohashi, Y., Torigoe, T., Matsumoto, Y., Yamashita, K., Kayama, M., Sato, N., & Yotsuyanagi, T. (2016). Wound healing delays in α-Klotho-deficient mice that have skin appearance similar to that in aged humans - Study of delayed wound healing mechanism. Biochemical and Biophysical Research Communications, 473(4), 845–852. https://doi.org/10.1016/j.bbrc.2016.03.138

Zhang, J., Cao, K., Pastor, J. V., Li, L., Moe, O. W., & Hsia, C. C. W. (2019). Alpha-Klotho, a critical protein for lung health, is not expressed in normal lung. FASEB BioAdvances, 1(11), 675–687. https://doi.org/10.1096/fba.2019-00016

Zhang, T., Ma, C., Zhang, Z., Zhang, H., & Hu, H. (2021). NF-κB signaling in inflammation and cancer. In MedComm (Vol. 2, Issue 4, pp. 618–653). John Wiley and Sons Inc. https://doi.org/10.1002/mco2.104

Zhang, Z., Nian, Q., Chen, G., Cui, S., Han, Y., & Zhang, J. (2020). Klotho Alleviates Lung Injury Caused by Paraquat via Suppressing ROS/P38 MAPK-Regulated Inflammatory Responses and Apoptosis.

Oxidative Medicine and Cellular Longevity, 2020, 1–13. https://doi.org/10.1155/2020/1854206

Zhao, Y., Zhao, M. M., Cai, Y., Zheng, M. F., Sun, W. L., Zhang, S. Y., Kong, W., Gu, J., Wang, X., & Xu, M. J. (2015). Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney International, 88(4), 711–721. https://doi.org/10.1038/ki.2015.160




DOI: https://doi.org/10.33024/jmm.v8i4.18882

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Medika Malahayati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

PRODI KEDOKTERAN

FAKULTAS KEDOKTERAN UNIVERSITAS MALAHAYATI