

INFORMASI ARTIKEL Disubmit: 8 Desember 2022 Diterima: 24 Januari 2023 Diterbitkan: 31 Januari 2023

at: http://ejurnalmalahayati.ac.id/index.php/teknologi/index

Penentuan rencana efektif produksi nata de coco dengan pendekatan pemodelan peramalan

Meilani Anggraini*, Heri Wibowo, dan Marcelly Widya Wardana

Program Studi Teknik Industri, Universitas Malahayati, Indonesia Korespondensi Penulis : Meilani Anggraini. *Email: melani.malahayati@gmail.com

ABSTRAK

Perencanaan produksi adalah suatu proses yang bertujuan untuk mengendalikan hasil produksi yang ditetapkan oleh perusahaan serta untuk meningkatkan kinerja proses produksi pada masa mendatang. Masalah yang terjadi saat ini adalah rencana produksi yang tidak efektif. Penelitian ini bertujuan merencanakan produksi yang efektif dengan pendekatan metode peramalan. Metodologi yang digunakan dalam penelitian ini yaitu metode peramalan dengan regresi linier. Dari hasil perhitungan diperoleh penghematan rencana efektif produksi Nata De Coco sebesar 178 hari atau 24,55%, dimana jumlah hari kerja produksi yang sesuai kalender kerja berjumlah 725 hari, sedangkan jumlah hari kerja produksi yang sesuai rencana kerja berjumlah 547 hari. Secara umum dapat dikatakan bahwa persentase penghematan rencana kerja produksi tersebut sangat mempengaruh kinerja produksi perusahaan.

Kata kunci: nata de coco, peramalan, rencana produksi

ABSTRACK

Determining the effective plan for nata de coco production with a forecasting modeling approach. Production planning is a process that aims to control the production results set by the company and to improve the performance of the production process in the future. The current problem is an ineffective production plan. This study aims to plan an effective production with a forecasting method approach. The method used in this research is regression linier forecasting. From the calculation results, it is found that the effective production plan of Nata De Coco is 178 days or 24.55%, where the number of production working days according to the work calendar is 725 days, while the number of production working days according to the work plan is 547 days. In general, it can be said that the percentage of savings in the production work plan greatly affects the company's production performance.

Keywords: forecasting, nata de coco, production plan

1. LATAR BELAKANG

Pada era industri, sektor perindustrian merupakan sektor yang cukup penting dalam hal perkembangan proses bisnis mulai dari pengolahan bahan baku, barang setengah jadi dan barang jadi. Dunia industri dituntut untuk dapat menghasilkan produk dengan kualitas yang baik dan memiliki daya saing industri. Oleh sebab itu, persaingan bidang industri yang semakin ketat akan mendorong pihak perusahaan industri menjalankan segala prosesnya semaksimal dan seoptimal mungkin melalui beberapa pendakatan seperti inovasi produk baru, mengembangkan produk yang ada atau menambah kapasitas jumlah produk.

PT. Keong Nusantara Abadi merupakan salah satu perusahaan industri yang memproduksi Nata De Coco yang bahan bakunya berasal dari sari kelapa. Kegiatan proses produksinya dituntut harus terencana, terkontrol dengan rapi dan baik.

Produksi adalah kegiatan dalam menciptakan dan menambah kegunaan (*utility*) suatu barang atau jasa untuk kegiatan dimana dibutuhkan faktorfaktor produksi berupa tanah, modal, tenaga kerja dan *skill* (Buffa & Sarin, 1996). Produksi adalah suatu kegiatan untuk menciptakan atau menambah kegunaan suatu barang dan jasa (Lalu S, 2003). Sedangkan ruang lingkup produksi yang mencakup

Agar dapat melaksanakan fungsi-fungsi produksi dengan baik, maka diperlukan rangkaian kegiatan yang akan membentuk sistem produksi sebagai kumpulan dari sub-sistem yang saling berinteraksi dengan tujuan mentransformasikan input produksi menjadi output produksi. Adapun sub-sistem dari sistem produksi tersebut terdiri dari beberapa unsur, yaitu perencanaan pengendalian produksi, pengendalian kualitas, perawatan fasilitas produksi, penentuan standarstandar operasi, penentuan fasilitas produksi, dan penentuan harga pokok produksi (Heizer & Render, Peramalan 2005). adalah proses untuk memperkirakan kebutuhan dimasa

$$a = \frac{\sum dt \times \sum t^2 - \sum t \times \sum t dt}{n \times \sum t^2 - (\sum t)^2}$$
 (1)

Perencanaan produksi adalah rencana tertulis yang menunjukkan apa dan berapa banyak setiap produk (barang jadi) yang akan dibuat dalam setiap periode untuk beberapa periode yang akan datang Rencana produksi per hari = $\frac{Produksi/bulan}{hari kerja}$ (3)

Perencanaan produksi yang akan diolah sesuai dengan rencana harian adalah:

Perencanaan yang tepat akan memberikan hasil produksi yang optimal sehingga untuk waktu yang akan datang perusahaan tidak akan mengalami kekurangaan atau kelebihan. Oleh karena itu, perusahaan harus dapat memprediksikan jumlah permintaan dan menargetkan produksi secara tepat waktu sehingga kebutuhan permintaan akan terpenuhi (Sofyan A, 2006 dan Wibowo. dkk, 2018). Permasalahan yang terjadi adalah rencana produksi yang tidak sesuai dengan permintaan konsumen, yang mana ketidaksesuaian ini disebabkan oleh harga kelapa per satuan unitnya. Oleh karena itu suplai bahan baku sari kelapa menjadi terganggu dan mempengaruhi proses. Adapun tujuan dari penelitian ini adalah merencanakan produksi Nata De Coco yang efektif dengan pendekatan metode peramalan.

2. METODE PENELITIAN

-kegiatan dan menyangkut keputusan mengenai rancangan operasi dan sistem pengawasan meliputi beberapa hal (Wibowo dkk, 2018; Elwood S. dkk, 2000; Lalu S, 2003). Pengawasan terhadap persediaan dan produksi

- 1. Pemeliharaan dan rehabilitasi pada sistem
- 2. Pengawasan mutu

mendatang yang meliputi kebutuhan dalam ukuran kuantitas, kualitas, waktu dan lokasi yang dibutuhkan dalam rangka memenuhi permintaan barang ataupun jasa (Arman H, 2006). Peramalan aktivitas fungsi merupakan bisnis memperkirakan penjualan dan penggunaan produk sehingga produk-produk itu dapat dibuat dalam kuantitas yang tepat (Gaspersz, 2002). Model kuantitatif intrinsik sering disebut sebagai model deret waktu. Model deret waktu yang populer dan umum diterapkan dalam peramalan permintaan adalah regresi linier (Gaspersz, 2002). Formulasi perhitungan regresi linier adalah dt'=a + b x t,

$$b = \frac{n \times \sum t dt - \sum t \times \sum dt}{n \times \sum t^2 - (\sum t)^2}$$
 (2)

(Baroto, 2002; Emy K, dkk, 2017; Wibowo & Nurbahri, 2017).

Adapun perhitungan rencana produksi adalah sebagai berikut:

$$\textit{Kebutuhan Produksi} = \frac{\textit{Rencana produksi/hari}}{\textit{komposisi (\%)}}$$
 (4)

Waktu siklus produksi = <u>Kebutuhan bahan baku/hari</u>(5)

Kapasitas produksi

Perhitungan rencana efektif produksi:

Waktu efektif = (waktu set up + waktu siklus) x hari kerja(6)

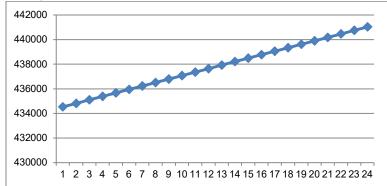
3. HASIL DAN PEMBAHASAN

Berikut data jumlah permintaan Nata De Coco

Tabel 1. Data Jumlah Permintaan Nata De Coco

Dulan	Pro	duksi (kg)	-
Bulan	2018	2019	
Januari	405.881	471.108	
Februari	400.462	424.006	
Maret	424.618	438.871	
April	446.112	406.774	
Mei	502.278	520.039	
Juni	461.334	488.612	
Juli	428.860	478.233	
Agustus	427.447	426.635	
September	437.603	413.397	
Oktober	364.936	426.680	
November	434.421	380.758	
Desember	454.269	443.510	

Sumber: Data Primer, 2019


Adapun jumlah kapasitas produksi Nata De Coco adalah 1,5 ton/jam, dengan efektifitas kerja produksi 20 jam/hari. Untuk menghitung peramalan, Tabel 2 merupakan hasil peramalan produksi minyak sawit tahun 2020 dan 2021 menggunakan metode regresi linier.

Tabel 2. Hasil Peramalan Produksi Metode Regresi Linier Menggunakan Software Excel OM 2

Data			Error analy	ysis		
	Demand					
Period	(y)	Period(x)	Forecast	Error	Absolute	Squared
Period 1	405881	1	434536,1	-28655,1	28655,1	8,21E+08
Period 2	400462	2	434818,6	-34356,6	34356,62	1,18E+09
Period 3	424618	3	435101,2	-10483,2	10483,15	1,1E+08
Period 4	446112	4	435383,7	10728,32	10728,32	1,15E+08
Period 5	502278	5	435666,2	66611,79	66611,79	4,44E+09
Period 6	461334	6	435948,7	25385,26	25385,26	6,44E+08
Period 7	428860	7	436231,3	-7371,26	7371,264	54335527
Period 8	427447	8	436513,8	-9066,79	9066,791	82206707
Period 9	437603	9	436796,3	806,6807	806,6807	650733,8
Period 10	364936	10	437078,8	-72142,8	72142,85	5,2E+09
Period 11	434421	11	437361,4	-2940,37	2940,375	8645805
Period 12	454269	12	437643,9	16625,1	16625,1	2,76E+08
Period 13	471108	13	437926,4	33181,57	33181,57	1,1E+09
Period 14	424006	14	438209	-14203	14202,96	2,02E+08
Period 15	438871	15	438491,5	379,5138	379,5138	144030,7
Period 16	406774	16	438774	-32000	32000,01	1,02E+09
Period 17	520039	17	439056,5	80982,46	80982,46	6,56E+09
Period 18	488612	18	439339,1	49272,93	49272,93	2,43E+09
Period 19	478233	19	439621,6	38611,4	38611,4	1,49E+09
Period 20	426635	20	439904,1	-13269,1	13269,13	1,76E+08
Period 21	413397	21	440186,7	-26789,7	26789,65	7,18E+08
Period 22	426680	22	440469,2	-13789,2	13789,18	1,9E+08
Period 23	380758	23	440751,7	-59993,7	59993,71	3,6E+09
Period 24	443510	24	441034,2	2475,763	2475,763	6129404

Data			Error anal	ysis			
	Demand						
Period	(y)	Period(x)	Forecast	Error		Absolute	Squared
			Total		0	650121,6	3,04E+10
Intercept	434253,569		Average		0	27088,4	1,27E+09
Slope	282,527826			Bias		MAD	MSE
•						SE	36372,37
						Correlation	0,054843

Sumber: Data Primer, 2020

Gambar 1. Grafik Hasil Peramalan Produksi Minyak Sawit Dengan Metode Regresi Linier

Gambar 1 menunjukkan bahwa adanya kenaikan jumlah produksi, yaitu faktor permintaan pasar yang cenderung terus naik. Setelah hasil peramalan diketahui, maka dapat dibuat perencanaan produksi tahun 2020 sampai dengan 2021. Contoh perhitungan rencana harian hasil

produksi bulan Januari 2020:
$$Rencana \frac{produksi}{hari} = \frac{434536,1}{14984 \ kg/hari} = 29$$

Rekapitulasi perhitungan selengkapnya disajikan dalam Tabel 3.

Tabel 3. Hasil Rencana Produksi Harian Tahun 2020

Bulan	Produksi (kg)	Hari Kerja	Rencana (kg/hari)
Januari	434536,1	29	14984
Februari	434818,6	29	14993,74
Maret	435101,2	31	14035,52
April	435383,7	30	14512,79
Mei	435666,2	30	14522,21
Juni	435948,7	30	14531,62
Juli	436231,3	31	14071,98
Agustus	436513,8	30	14550,46
September	436796,3	30	14559,88
Oktober	437078,8	31	14099,32
November	437361,4	30	14578,71
Desember	437643,9	31	14117,55

Sumber: Data Primer, 2020

Tabel 4. Hasil Rencana Produksi Harian Tahun 2021

Bulan	Produksi (kg)	Hari Kerja	Rencana (kg/hari)
Januari	437926,4	30	14597,55
Februari	438209	29	15110,66
Maret	438491,5	31	14144,89
April	438774	30	14625,8
Mei	439056,5	30	14635,22
Juni	439339,1	30	14644,64
Juli	439621,6	31	14181,34
Agustus	439904,1	30	14663,47

September	440186,7	30	14672,89	
Oktober	440469,2	31	14208,68	
November	440751,7	30	14691,72	
Desember	441034,2	31	14226,91	

Sumber: Data Primer, 2020

Dari Tabel 3 dan Tabel 4, total hari kerja adalah 725 hari dan rencana produksi harian berjumlah 347.961,5 kg. Hasil perhitungan perencanaan produksi diatas merupakan penyesuaian berdasarkan peramalan permintaan tahun 2018 dan 2019. Untuk mencapai perencanaan tersebut, maka perusahaan harus melakukan perhitungan jumlah

bahan baku sari kelapa yang harus diolah untuk mendapatkan hasil produksi yang sesuai dengan rencana.

Contoh perhitungan:

Kebutuhan =
$$\frac{14984}{60\%}$$
 = 400231,40 kg/har

Tabel 5. Hasil Rencana Produksi Pengolahan Bahan Baku Tahun 2020

Bulan	Rencana (kg/hari)	Komposisi	Kebutuhan (kg/hari)
Januari	14984	60%	24973,34
Februari	14993,74	60%	24989,57
Maret	14035,52	60%	23392,54
April	14512,79	60%	24187,98
Mei	14522,21	60%	24203,68
Juni	14531,62	60%	24219,37
Juli	14071,98	60%	23453,3
Agustus	14550,46	60%	24250,77
September	14559,88	60%	24266,46
Oktober	14099,32	60%	23498,86
November	14578,71	60%	24297,86
Desember	14117,55	60%	23529,24

Sumber: Data Primer, 2020

Tabel 6. Hasil Rencana Produksi Pengolahan Bahan Baku Tahun 2021

Bulan	Rencana/Hari(kg)	Komposisi	Kebutuhan/Hari(kg)
Januari	14597,55	60%	24329,24
Februari	15110,66	60%	25184,43
Maret	14144,89	60%	23574,81
April	14625,8	60%	24376,33
Mei	14635,22	60%	24392,03
Juni	14644,64	60%	24407,73
Juli	14181,34	60%	23635,57
Agustus	14663,47	60%	24439,12
September	14672,89	60%	24454,82
Oktober	14208,68	60%	23681,14
November	14691,72	60%	24486,21
Desember	14226,91	60%	23711,52

Sumber: Data Primer, 2020

Dari Tabel 5 dan Tabel 6, untuk menghasilkan total rencana produksi pada perhitungan sebelumnya membutuhkan bahan baku harian sebanyak 579.935,9 kg. Kapasitas produksi pada perusahaan adalah 1,5 ton/jam (1.500 kg/jam) dan memiliki waktu efektif kerja selama 20 jam/hari.

Perhitungan waktu siklus produksi tahun 2020 dan 2021 adalah:

waktu siklus produksi =
$$\frac{24973,34}{1500}$$
$$= 16,65 jam$$

Rekapitulasi perhitungan selengkapnya disajikan dalam Tabel 7.

Tabel 7. Perhitungan Rencana Produksi dan Waktu Siklus produksi Tahun 2020

Bulan	Rencana (kg/hari)	Kebutuhan (kg/hari)	Kapasitas (kg/jam)	Siklus Produksi (jam)
Januari	14984	24329,24	1500	16,64889
Februari	14993,74	25184,43	1500	16,65972
Maret	14035,52	23574,81	1500	15,59503
April	14512,79	24376,33	1500	16,12532
Mei	14522,21	24392,03	1500	16,13579
Juni	14531,62	24407,73	1500	16,14625
Juli	14071,98	23635,57	1500	15,63553
Agustus	14550,46	24439,12	1500	16,16718
September	14559,88	24454,82	1500	16,17764
Oktober	14099,32	23681,14	1500	15,66591
November	14578,71	24486,21	1500	16,19857
Desember	14117,55	23711,52	1500	15,68616

Sumber: Data Primer, 2020

Tabel 8. Perhitungan Rencana Produksi dan Waktu Siklus Produksi Tahun 2021

Bulan	Rencana (kg/hari)	Kebutuhan (kg/hari)	Kapasitas (kg/jam)	Siklus Produksi (jam)
Januari	14597,55	24973,34	1500	16,2195
Februari	15110,66	24989,57	1500	16,78962
Maret	14144,89	23392,54	1500	15,71654
April	14625,8	24187,98	1500	16,25089
Mei	14635,22	24203,68	1500	16,26135
Juni	14644,64	24219,37	1500	16,27182
Juli	14181,34	23453,3	1500	15,75705
Agustus	14663,47	24250,77	1500	16,29274
September	14672,89	24266,46	1500	16,30321
Oktober	14208,68	23498,86	1500	15,78743
November	14691,72	24297,86	1500	16,32414
Desember	14226,91	23529,24	1500	15,80768

Sumber: Data Primer, 2020

Dari Tabel 7 dan Tabel 8, total waktu siklus produksi adalah 386,6239 jam. Selanjutnya dilakukan perhitungan waktu efektif yang terpakai dalam perencanaan produksi.

Waktu efektif = (waktu set up + waktu siklus) x hari kerja

waktu siklus = (2 jam + 16,65 jam)x 29= 540,8179 jam

Rekapitulasi perhitungan selengkapnya disajikan dalam Tabel 9.

Tabel 9. Perhitungan Waktu Efektif Produksi Tahun 2020

Bulan	Produksi (kg)	Waktu Set Up	Siklus Produksi	Hari Kerja	Waktu Efektif
		(Jam)	(jam)		Produksi (jam)
Januari	434536,1	2	16,64889	29	540,8179
Februari	434818,6	2	16,65972	29	541,1318
Maret	435101,2	2	15,59503	31	545,4458
April	435383,7	2	16,12532	30	543,7597
Mei	435666,2	2	16,13579	30	544,0736
Juni	435948,7	2	16,14625	30	544,3874
Juli	436231,3	2	15,63553	31	546,7014
Agustus	436513,8	2	16,16718	30	545,0153
September	436796,3	2	16,17764	30	545,3292
Oktober	437078,8	2	15,66591	31	547,6431
November	437361,4	2	16,19857	30	545,9571
Desember	437643,9	2	15,68616	31	548,271

Jumlah 6538,533

Sumber: Data Primer, 2020

Tabel 10. Perhitungan Waktu Efektif Produksi Tahun 2021

Bulan	Produksi (kg)	Waktu Set Up	Siklus Produksi	Hari Kerja	Waktu Efektif
		(Jam)	(jam)		Produksi (jam)
Januari	437926,4	2	16,2195	30	546,5849
Februari	438209	2	16,78962	29	544,8989
Maret	438491,5	2	15,71654	31	549,2128
April	438774	2	16,25089	30	547,5267
Mei	439056,5	2	16,26135	30	547,8406
Juni	439339,1	2	16,27182	30	548,1546
Juli	439621,6	2	15,75705	31	550,4684
Agustus	439904,1	2	16,29274	30	548,7823
September	440186,7	2	16,30321	30	549,0963
Oktober	440469,2	2	15,78743	31	551,4102
November	440751,7	2	16,32414	30	549,7241
Desember	441034,2	2	15,80768	31	552,038
Jumlah					6585,738

Sumber: Data Primer, 2020

Tabel 9 dan Tabel 10 menunjukkan bahwa total waktu efektif perencanaan produksi untuk tahun 2020 dan 2021 adalah sebesar 13124,27 jam, atau ekivalen dengan 547 hari. Artinya waktu yang dibutuhkan untuk mengolah produk Nata De Coco sudah efektif dari waktu kerja yang tersedia selama 2 tahun.

Berdasarkan hasil pengolahan data dan pembahasan yang telah diuraikan, menunjukkan bahwa terjadi penghematan waktu efektif produksi selama 178 hari atau sebesar 24,55% seperti yang tersaji pada Tabel 11.

Tabel 11. Perbandingan Waktu Efektif Produksi

	Jumlah Hari Kerja Produksi		Persentase
	Kalender Kerja	Rencana Kerja	reisemase
Rencana Efektif Produksi	725 Hari	547 Hari	24,55%

Sumber: Data Primer, 2020

4. SIMPULAN

Berdasarkan analisis dan pembahasan yang telah diuraikan, dapat disimpulkan bahwa berdasarkan data permintaan dan perhitungan peramalan produksi, maka waktu efektif produksi terjadi penghematan selama 178 hari atau sebesar 24,55%.

DAFTAR PUSTAKA

Arman H. N. (2006). Manajemen Industri. Yogyakarta: Andi Offset.

Baroto, T. (2002). Perencanaan dan pengendalian produksi. *Jakarta: Ghalia Indonesia*.

Buffa, E. S., & Sarin, R. K. (1996). Manajemen operasi dan produksi modern. *Edisi Kedelapan, Jilid Satu, Jakarta: Binarupa Aksara*.

Gaspersz, V. (2002). Manajemen Kualitas, Penerapan Konsep, Kualitas Dalam Manajemen Bisnis Total, Jakarta: PT. Gramedia Pustaka Utama. Heizer, J., & Render, B. (2005). Manajemen Operasi (Terjemahan). Salemba Empat, Jakarta.

Khikmawati, E., Anggraini, M., & Anwar, K. (2017). Analisis Perencanaan Biaya Persediaan Produk Semen Melalui Pendekatan Perencanaan Kebutuhan Bahan Baku (Material Requirement Planning). *Jurnal Rekayasa, Teknologi, dan Sains, 1*(1).

Lalu, S. (2003). Dasar-dasar Manajemen Produksi dan Operasi. *Jakarta: Penerbit Salemba Empat*.

Sofyan, A. (2006). Manajemen Produksi Dan Operasi Jilid 4. Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia.

Wibowo, H., & Nurbahri, H. (2017). Analisa Perencanaan Kebutuhan Bahan Dengan Kriteria Minimasi Biaya Persediaan Bahan Baku Pada PT. Fajar Utama Furnishing Bekasi. *Spektrum Industri*, 15(1), 27.

Wibowo, H., & Sulastri, S. (2018). Perencanaan Produksi Minyak Sawit Dengan Pendekatan Biaya Produksi. In Seminar Nasional Teknologi Informasi Komunikasi dan Industri (pp. 500-506).