OPPORTUNITIES FOR THE APPLICATION OF THE GUT-BRAIN-AXIS MICROBIOTA FOR THE OPTIMIZATION OF NERVE GROWTH AND DEVELOPMENT IN INFANTS

Arohid Allatib, Zahwa Arsy Azzahra, Immaculata Widyaningrum, Cahya Wahyudi Januarta

Sari


Abstract: Opportunities for The Application of The Gut-Brain-Axis Microbiota for The Optimization of Nerve Growth and Development in Infants. Neurodevelopment in infants is very important and has a significant role in shaping their future intellectual, emotional, and physical capacities. Nerve cells (neurons) form a neural network in babies from the time of pregnancy. The interaction between the gut microbiota and the brain occurs through a pathway called the gut-brain axis. Studies have shown that gut microbiota influences brain function and human behavior. To find out the efforts that can be made to maximize the development of the baby's brain by utilizing the concept of the gut-brain-axis microbiota. Using literature review techniques from international articles in the 2013-2023 using specific keywords in PubMed, Cochrane, Embase, Scopus, Google Scholar, and Textbook. Efforts to improve neurodevelopment using the concept of a gut-brain-axis microbiota are essentially efforts to create a good microbiota balance in the gut.  These efforts include maintaining and maintaining the balance of the healthy microbiota of pregnant women, giving birth pre-vaginal, providing exclusive breast milk, reducing the use of antibiotics that are not required, providing complementary foods breast milk rich in probiotics and prebiotics, providing stimulus, and reduce the use of chemicals.  The concept of gut-brain-axis microbiota is very applicable to maximize neurodevelopment in infants starting by paying particular attention to the prenatal and postnatal periods.


Kata Kunci


Microbiota, gut-brain-axis, infant, brain development, nerve growth

Teks Lengkap:

PDF

Referensi


Ackerman S. Discovering the Brain. Washington (DC): National Academies Press (US); 1992. 6, The Development and Shaping of the Brain. Available from: https://www.ncbi.nlm.nih.gov/books/NBK234146/

Centers for Disease Control and Prevention. (2022, March 25). Early Brain Development and Health. Centers for Disease Control and Prevention. Retrieved February 12, 2023, from https://www.cdc.gov/ncbddd/childdevelopment/early-brain-development.html

Douet, V., Chang, L., Cloak, C., & Ernst, T. (2014). Genetic influences on brain developmental trajectories on neuroimaging studies: from infancy to young adulthood. Brain imaging and behavior, 8(2), 234–250. https://doi.org/10.1007/s11682-013-9260-1

Miguel, P. M., Pereira, L. O., Silveira, P. P., & Meaney, M. J. (2019). Early environmental influences on the development of children's brain structure and function. Developmental medicine and child neurology, 61(10), 1127–1133. https://doi.org/10.1111/dmcn.14182

Georgieff, M. K., Ramel, S. E., & Cusick, S. E. (2018). Nutritional influences on brain development. Acta paediatrica (Oslo, Norway : 1992), 107(8), 1310–1321. https://doi.org/10.1111/apa.14287

Grigorenko EL. Brain Development: The Effect of Interventions on Children and Adolescents. In: Bundy DAP, Silva Nd, Horton S, et al., editors. Child and Adolescent Health and Development. 3rd edition. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2017 Nov 20. Chapter 10. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525261/ doi: 10.1596/978-1-4648-0423-6_ch10

Leeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 11(12), 2862. https://doi.org/10.3390/nu11122862

Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of gastroenterology, 28(2), 203–209.

Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World journal of gastroenterology, 21(29), 8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787

Breit, S., Kupferberg, A., Rogler, G., & Hasler, G. (2018). Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Frontiers in psychiatry, 9, 44. https://doi.org/10.3389/fpsyt.2018.00044

Sudo N. (2019). Role of gut microbiota in brain function and stress-related pathology. Bioscience of microbiota, food and health, 38(3), 75–80. https://doi.org/10.12938/bmfh.19-006

Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E., & Wakefield, S. (2017). Gut microbiota's effect on mental health: The gut-brain axis. Clinics and practice, 7(4), 987. https://doi.org/10.4081/cp.2017.987

Yang, I., Corwin, E. J., Brennan, P. A., Jordan, S., Murphy, J. R., & Dunlop, A. (2016). The Infant Microbiome: Implications for Infant Health and Neurocognitive Development. Nursing research, 65(1), 76–88. https://doi.org/10.1097/NNR.0000000000000133

Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ. https://doi.org/10.1136/bmj.k2179

Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G. (2015). The infant microbiome development: mom matters. Trends in molecular medicine, 21(2), 109–117. https://doi.org/10.1016/j.molmed.2014.12.002

Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011

Bush, N. R., Wakschlag, L. S., LeWinn, K. Z., Hertz-Picciotto, I., Nozadi, S. S., Pieper, S., Lewis, J., Biezonski, D., Blair, C., Deardorff, J., Neiderhiser, J. M., Leve, L. D., Elliott, A. J., Duarte, C. S., Lugo-Candelas, C., O'Shea, T. M., Avalos, L. A., Page, G. P., & Posner, J. (2020). Family Environment, Neurodevelopmental Risk, and the Environmental Influences on Child Health Outcomes (ECHO) Initiative: Looking Back and Moving Forward. Frontiers in psychiatry, 11, 547. https://doi.org/10.3389/fpsyt.2020.00547

Georgieff, M. K., Ramel, S. E., & Cusick, S. E. (2018). Nutritional influences on brain development. Acta paediatrica (Oslo, Norway : 1992), 107(8), 1310–1321. https://doi.org/10.1111/apa.14287

Committee on the Science of Children Birth to Age 8: Deepening and Broadening the Foundation for Success; Board on Children, Youth, and Families; Institute of Medicine; National Research Council; Allen LR, Kelly BB, editors. Transforming the Workforce for Children Birth Through Age 8: A Unifying Foundation. Washington (DC): National Academies Press (US); 2015 Jul 23. 4, Child Development and Early Learning. Available from: https://www.ncbi.nlm.nih.gov/books/NBK310550/

Tran, N. Q. V., & Miyake, K. (2017). Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. International journal of genomics, 2017, 7526592. https://doi.org/10.1155/2017/7526592

Konkel, L. (2018). The brain before birth: Using fmri to explore the secrets of fetal neurodevelopment. Environmental Health Perspectives, 126(11), 112001. https://doi.org/10.1289/ehp2268

Yoshida, S., & Funato, H. (2021). Physical contact in parent-infant relationship and its effect on fostering a feeling of safety. iScience, 24(7), 102721. https://doi.org/10.1016/j.isci.2021.102721

Villar, J., Fernandes, M., Purwar, M. et al. Neurodevelopmental milestones and associated behaviours are similar among healthy children across diverse geographical locations. Nat Commun 10, 511 (2019). https://doi.org/10.1038/s41467-018-07983-4

Beltre G, Mendez MD. Child Development. [Updated 2022 Sep 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK564386/

Appleton J. (2018). The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integrative medicine (Encinitas, Calif.), 17(4), 28–32.

Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. The Biochemical journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510

Chen, Y., Xu, J., & Chen, Y. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 13(6), 2099. https://doi.org/10.3390/nu13062099

Sudo N. (2019). Role of gut microbiota in brain function and stress-related pathology. Bioscience of microbiota, food and health, 38(3), 75–80. https://doi.org/10.12938/bmfh.19-006

Butler, M. I., Mörkl, S., Sandhu, K. V., Cryan, J. F., & Dinan, T. G. (2019). The Gut Microbiome and Mental Health: What Should We Tell Our Patients?: Le microbiote Intestinal et la Santé Mentale : que Devrions-Nous dire à nos Patients?. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 64(11), 747–760. https://doi.org/10.1177/0706743719874168

Doroftei, B. et al. (2022) ‘An Updated Narrative Mini-Review on the Microbiota Changes in Antenatal and Post-Partum Depression’, Diagnostics, 12(7), pp. 1–19. doi: 10.3390/diagnostics12071576.

Weiss, S. J. and Hamidi, M. (2023) ‘Maternal stress during the third trimester of pregnancy and the neonatal microbiome’, Journal of Maternal-Fetal and Neonatal Medicine, 36(1), p. doi: 10.1080/14767058.2023.2214835.

Korgan, A. C. et al. (2022) ‘Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior’, Scientific Reports, 12(1), pp. 1–17. doi: 10.1038/s41598-022-14095-z.

Muhammad, F. et al. (2022) ‘The Molecular Gut-Brain Axis in Early Brain Development’, International Journal of Molecular Sciences, 23(23). doi: 10.3390/ijms232315389.

Bresesti, I. et al. (2022) ‘The Microbiota-Gut Axis in Premature Infants: Physio-Pathological Implications’, Cells, 11(3). doi: 10.3390/cells11030379.

Cabré, S. et al. (2022) ‘Animal models for assessing impact of C-section delivery on biological systems’, Neuroscience and Biobehavioral Reviews, 135(February). doi: 10.1016/j.neubiorev.2022.104555.

Shulman, R. J. et al. (2022) ‘Infant behavioral state and stool microbiome in infants receiving Lactocaseibacillus rhamnosus GG in formula: randomized controlled trial’, BMC Pediatrics, 22(1), pp. 1–15. doi: 10.1186/s12887-022-03647-x.

Mohamed, H. J. J. et al. (2022) ‘Brain–immune–gut benefits with early life supplementation of milk fat globule membrane’, JGH Open, 6(7), pp. 454–461. doi: 10.1002/jgh3.12775.

Balaguer-Trias, J. et al. (2022) ‘Impact of Contaminants on Microbiota: Linking the Gut–Brain Axis with Neurotoxicity’, International Journal of Environmental Research and Public Health, 19(3). doi: 10.3390/ijerph19031368.

Di Profio, E. et al. (2022) ‘Special Diets in Infants and Children and Impact on Gut Microbioma’, Nutrients, 14(15). doi: 10.3390/nu14153198.

Schoch, S. F. et al. (2022) ‘From Alpha Diversity to Zzz: Interactions among sleep, the brain, and gut microbiota in the first year of life’, Progress in Neurobiology, 209, p. 102208. doi: 10.1016/j.pneurobio.2021.102208.

Walker, R. W., Clemente, J. C., Peter, I., & Loos, R. J. F. (2017). The prenatal gut microbiome: are we colonized with bacteria in utero?. Pediatric obesity, 12 Suppl 1(Suppl 1), 3–17. https://doi.org/10.1111/ijpo.12217

Moore, R. E., & Townsend, S. D. (2019). Temporal development of the infant gut microbiome. Open biology, 9(9), 190128. https://doi.org/10.1098/rsob.190128

Lee, J. K., Hern Tan, L. T., Ramadas, A., Ab Mutalib, N. S., & Lee, L. H. (2020). Exploring the Role of Gut Bacteria in Health and Disease in Preterm Neonates. International journal of environmental research and public health, 17(19), 6963. https://doi.org/10.3390/ijerph17196963

Gilbert, J. A., Blaser, M. J., Caporaso, J. G., Jansson, J. K., Lynch, S. V., & Knight, R. (2018). Current understanding of the human microbiome. Nature medicine, 24(4), 392–400. https://doi.org/10.1038/nm.4517

Martin, C. R., Ling, P. R., & Blackburn, G. L. (2016). Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 8(5), 279. https://doi.org/10.3390/nu8050279




DOI: https://doi.org/10.33024/jikk.v9i10.11582

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-nc4.footer##

Pendidikan Dokter Universitas Malahayati Lampung



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.