EFEKTIVITAS ADIPOSE DERIVED STEM CELL TERHADAP PENYEMBUHAN LUKA BAKAR: TELAAH SISTEMATIS
Sari
Luka bakar merupakan suatu bentuk kerusakan pada jaringan kulit yang dapat menyebabkan gangguan pada fungsi dan anatomi tubuh. terapi stem cell yang berasal dari adipose (ADSC) memiliki efektivitas yang tinggi terhadap penyembuhan luka bakar. Melalui telaah sistematis ini kami akan menenjelaskan beberapa penelitian efektivitas Adipose derived stem cell terhadap penyembuhan luka bakar.. Metode telaah sistematis dilakukan melalui penelusuran artikel publikasi pada MEDLINE, Google scholar, PubMed serta Proquest dengan kata kunci stem cell, adipose-derived stem cell, luka bakar, efektivitas ADSC. Penelusuran literatur dari terbitan tahun 2019-2023 dengan desain penelitian eksperimental. Hasil penelusuran didapatkan 18 penelitian yang memenuhi kriteria untuk kemudian dilakukan review. Dari beberapa hasil penelitian menjelaskan bahwa ADSC memiliki manfaat dalam proses penyembuhan luka bakar dengan berbagai jenis terapi ADSC. Terapi ADSC menunjukan peningkatan angiogenesis, kolagen, fibroblast, diferensiasi sel, dan proliferasi. ADSC yang dikombinasikan dengan hydrogel, kolagen ataupun 3D Scalffold lebih efektif dibandingkan dengan ADSC saja.
Kata Kunci
Teks Lengkap:
PDFReferensi
Alemzadeh, E., Oryan, A., & Mohammadi, A. A. (2020). Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 108(2), 555–567. https://doi.org/10.1002/jbm.b.34411
Azam, M., Ghufran, H., Butt, H., Mehmood, A., Ashfaq, R., Ilyas, A. M., Ahmad, M. R., & Riazuddin, S. (2021). Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. Burns & Trauma, 9, tkab021. https://doi.org/10.1093/burnst/tkab021
Banerjee, J., Seetharaman, S., Wrice, N. L., Christy, R. J., & Natesan, S. (2019). Delivery of silver sulfadiazine and adipose derived stem cells using fibrin hydrogel improves infected burn wound regeneration. PloS One, 14(6), e0217965. https://doi.org/10.1371/journal.pone.0217965
Barrera, J. A., Trotsyuk, A. A., Maan, Z. N., Bonham, C. A., Larson, M. R., Mittermiller, P. A., Henn, D., Chen, K., Mays, C. J., Mittal, S., Mermin-Bunnell, A. M., Sivaraj, D., Jing, S., Rodrigues, M., Kwon, S. H., Noishiki, C., Padmanabhan, J., Jiang, Y., Niu, S., … Gurtner, G. C. (2021). Adipose-Derived Stromal Cells Seeded in Pullulan-Collagen Hydrogels Improve Healing in Murine Burns. Tissue Engineering. Part A, 27(11–12), 844–856. https://doi.org/10.1089/ten.TEA.2020.0320
Dong, Y., Cui, M., Qu, J., Wang, X., Kwon, S. H., Barrera, J., Elvassore, N., & Gurtner, G. C. (2020). Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomaterialia, 108, 56–66. https://doi.org/10.1016/j.actbio.2020.03.040
Feng, C.-J., Lin, C.-H., Tsai, C.-H., Yang, I.-C., & Ma, H. (2019). Adipose-derived stem cells-induced burn wound healing and regeneration of skin appendages in a novel skin island rat model. Journal of the Chinese Medical Association: JCMA, 82(8), 635–642. https://doi.org/10.1097/JCMA.0000000000000134
Franck, C. L., Senegaglia, A. C., Leite, L. M. B., de Moura, S. A. B., Francisco, N. F., & Ribas Filho, J. M. (2019). Influence of Adipose Tissue-Derived Stem Cells on the Burn Wound Healing Process. Stem Cells International, 2019, 2340725. https://doi.org/10.1155/2019/2340725
Fujiwara, O., Prasai, A., Perez-Bello, D., El Ayadi, A., Petrov, I. Y., Esenaliev, R. O., Petrov, Y., Herndon, D. N., Finnerty, C. C., Prough, D. S., & Enkhbaatar, P. (2020). Adipose-derived stem cells improve grafted burn wound healing by promoting wound bed blood flow. Burns & Trauma, 8, tkaa009. https://doi.org/10.1093/burnst/tkaa009
Ghieh, F., Jurjus, R., Ibrahim, A., Geagea, A. G., Daouk, H., El Baba, B., Chams, S., Matar, M., Zein, W., & Jurjus, A. (2015). The Use of Stem Cells in Burn Wound Healing: A Review. BioMed Research International, 2015, 1–9. https://doi.org/10.1155/2015/684084
Han, Y., Ren, J., Bai, Y., Pei, X., & Han, Y. (2019). Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. The International Journal of Biochemistry & Cell Biology, 109, 59–68. https://doi.org/10.1016/j.biocel.2019.01.017
Hocking, A. M., & Gibran, N. S. (2010). Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair. Experimental Cell Research, 316(14), 2213–2219. https://doi.org/10.1016/j.yexcr.2010.05.009
Johnson, K. E., & Wilgus, T. A. (2014). Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Advances in Wound Care, 3(10), 647–661. https://doi.org/10.1089/wound.2013.0517
Junaidi, H., Sari, P., Septiara, D. P., Pawitan, J. A., & Yunaini, L. (2019). Application of Human Adipose Stem Cell (hADSC) in Collagen Gel on Rat Deep Dermal Burn. OnLine Journal of Biological Sciences, 19(3), 192–202. https://doi.org/10.3844/ojbsci.2019.192.202
Kaita, Y., Tarui, T., Yoshino, H., Matsuda, T., Yamaguchi, Y., Nakagawa, T., Asahi, M., & Ii, M. (2019). Sufficient therapeutic effect of cryopreserved frozen adipose-derived regenerative cells on burn wounds. Regenerative Therapy, 10, 92–103. https://doi.org/10.1016/j.reth.2019.01.001
Kementerian Kesehatan RI. (2020). Pedoman Nasional Pelayanan Kedokteran Tata Laksana Luka Bakar.
Lu, T.-Y., Yu, K.-F., Kuo, S.-H., Cheng, N.-C., Chuang, E.-Y., & Yu, J.-S. (2020). Enzyme-Crosslinked Gelatin Hydrogel with Adipose-Derived Stem Cell Spheroid Facilitating Wound Repair in the Murine Burn Model. Polymers, 12(12), 2997. https://doi.org/10.3390/polym12122997
Martino, S., D’Angelo, F., Armentano, I., Kenny, J. M., & Orlacchio, A. (2012). Stem cell-biomaterial interactions for regenerative medicine. Biotechnology Advances, 30(1), 338–351. https://doi.org/10.1016/j.biotechadv.2011.06.015
Mescher, A. (2013). Junqueira’s Basic Histology: Text and Atlas (13th ed.). McGraw Hill Professional.
Morris, P. J., & Malt, R. A. (1994). Oxford textbook of surgery. Oxford university press.
Ng, J. Y., Zhu, X., Mukherjee, D., Zhang, C., Hong, S., Kumar, Y., Gokhale, R., & Ee, P. L. R. (2021). Pristine Gellan Gum–Collagen Interpenetrating Network Hydrogels as Mechanically Enhanced Anti-inflammatory Biologic Wound Dressings for Burn Wound Therapy. ACS Applied Bio Materials, 4(2), 1470–1482. https://doi.org/10.1021/acsabm.0c01363
Ozpur, M. A., Guneren, E., Canter, H. I., Karaaltin, M. V., Ovali, E., Yogun, F. N., Baygol, E. G., & Kaplan, S. (2016). Generation of Skin Tissue Using Adipose Tissue-Derived Stem Cells. Plastic and Reconstructive Surgery, 137(1), 134–143. https://doi.org/10.1097/PRS.0000000000001927
Ribeiro, M., Santos, K. C., Macedo, M. R., de Souza, G. A., Neto, F. I. de A., Araujo, G. H. M., Cavalcante, D. R., Costa, F. F., de Sá Ferreira, G., Peixoto, L. A., de Miranda Moraes, J., & Vulcani, V. A. S. (2024). Use of adipose derived stem cells accelerates the healing process in third-degree burns. Burns: Journal of the International Society for Burn Injuries, 50(1), 132–145. https://doi.org/10.1016/j.burns.2023.08.018
Roshangar, L., Rad, J. S., Kheirjou, R., & Khosroshahi, A. F. (2021). Using 3D-bioprinting scaffold loaded with adipose-derived stem cells to burns wound healing. Journal of Tissue Engineering and Regenerative Medicine, 15(6), 546–555. https://doi.org/10.1002/term.3194
Santi. (2018). Peranan Sel Punca dalam Penyembuhan Luka. Cermin Dunia Kedokteran, 45(4).
Strong, A. L., Neumeister, M. W., & Levi, B. (2017). Stem Cells and Tissue Engineering: Regeneration of the Skin and Its Contents. Clinics in Plastic Surgery, 44(3), 635–650. https://doi.org/10.1016/j.cps.2017.02.020
Sudjatmiko, G. (2014). Petunjuk Praktis Ilmu Bedah Plastik Rekonstruksi. Yayasan Lingkar Studi Bedah Plastik.
Wu, Y., Liang, T., Hu, Y., Jiang, S., Luo, Y., Liu, C., Wang, G., Zhang, J., Xu, T., & Zhu, L. (2021). 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing. Regenerative Biomaterials, 8(3), rbab014. https://doi.org/10.1093/rb/rbab014
Yu, Q., Sun, H., Yue, Z., Yu, C., Jiang, L., Dong, X., Yao, M., Shi, M., Liang, L., Wan, Y., Zhang, H., Yao, F., & Li, J. (2023). Zwitterionic Polysaccharide-Based Hydrogel Dressing as a Stem Cell Carrier to Accelerate Burn Wound Healing. Advanced Healthcare Materials, 12(7), e2202309. https://doi.org/10.1002/adhm.202202309
Yunaini, L., Sari, P., Septiara, D. P., Junaidi, H., & Antarianto, R. D. (2019). Human Adipose Stem Cells in Collagen on Angiogenesis Process of Burn Healing in Rat Model: Its Number of Blood Vessels. OnLine Journal of Biological Sciences, 19(1), 9–14. https://doi.org/10.3844/ojbsci.2019.9.14
Zhou, X., Ning, K., Ling, B., Chen, X., Cheng, H., Lu, B., Gao, Z., & Xu, J. (2019). Multiple Injections of Autologous Adipose-Derived Stem Cells Accelerate the Burn Wound Healing Process and Promote Blood Vessel Regeneration in a Rat Model. Stem Cells and Development, 28(21), 1463–1472. https://doi.org/10.1089/scd.2019.0113
Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7(2), 211–228. https://doi.org/10.1089/107632701300062859
DOI: https://doi.org/10.33024/jikk.v11i4.14203
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
##submission.license.cc.by-nc4.footer##
Pendidikan Dokter Universitas Malahayati Lampung

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.