Sinyal Bradikinin Pada Covid-19: Tinjauan Pustaka
Sari
Patofisiologi COVID-19 melibatkan jalur persinyalan seluler dan molekuler kompleks terkait inflamasi. Salah satu jalur yang mungkin terlibat adalah jalur bradikinin yang mengalami disregulasi. Bradikinin adalah suatu nonapeptida linear derivat dari kininogen yang terdistribusi di berbagai jaringan dan di plasma. Bukti ilmiah memperlihatkan peningkatan produksi bradikinin pada inflamasi. Manifestasi klinis seperti batuk juga berhubungan dengan aktivitas bradikinin. Memahami patogenesi COVID-19 menjadi penting dalam upaya menemukan pendekatan baru pada terapi efektif yang melibatkan jalur bradikinin. Pada tinjauan pustaka ini, akan dibahas bagaimana peranan bradikinin dan metabolitnya pada patogenesis COVID-19.
Kata Kunci
Teks Lengkap:
PDFReferensi
Abassi, Z. et al. (2021). Kinins and chymase: the forgotten components of the renin-angiotensin system and their implications in COVID-19 disease. American Journal of Physiology – Lung Cellular and Molecular Physiology. 320(3):L422–9. Available at: https://doi.org/10.1152/ajplung.00548.2020.
Baş, M. et al. (2015). A Randomized Trial of Icatibant in ACE-Inhibitor–Induced Angioedema. New England Journal of Medicine. 372(5):418–25. Available at: https://doi.org/10.1056/NEJMoa1312524
Curran, C.S., Rivera, D.R., and Kopp, J.B. (2020). COVID-19 Usurps Host Regulatory Networks. Frontiers in Pharmacology. 11:1278. Available at: https://doi.org/10.3389/fphar.2020.01278.
Garvin, M.R., et al. (2020). A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife. 9:e59177. Available at: https://doi.org/10.7554/eLife.59177.
Ghahestani, S.M., et al. (2020). Bradykinin as a Probable Aspect in SARS-Cov-2 Scenarios: Is Bradykinin Sneaking out of our Sight? Iranian Journal of Allergy, Asthma and Immunology. 19(S1):13-17. Available at: https://doi.org/ 10.18502/ijaai.v19i(s1.r1).2850.
Hosseini, L. et al. (2020). Bradykinin System: A Therapeutic Goal for COVID-19. Archieves of Pediatric Infectious Diseases. 10(1):e108554. Available from: https://doi.org/10.5812/pedinfect.108554
Imai, Y. et al. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 436(7047):112–6. Available at: https://doi.org/10.1038/nature03712.
Kaplan, A.P. and Ghebrehiwet, B. (2021). Pathways for bradykinin formation and interrelationship with complement as a cause of edematous lung in COVID-19 patients. Journal of Allergy and Clinical Immunology. 147(2):507–9. Available at: https://doi.org/10.1016/j.jaci.20.
Kim, J.S., et al. (2021). Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 11(1):316–29. Available at: https://doi.org/10.7150/thno.49713.
Lau, J., et al. (2020). A Systematic Review of Molecular Imaging Agents Targeting Bradykinin B1 and B2 Receptors. Pharmaceuticals. 13(8):199. Available at: https://doi.org/10.3390/ph13080199.
Maglakelidze, N., Manto, K.M., and, Craig, T.J. (2020). A Review: Does Complement or the Contact System Have a Role in Protection or Pathogenesis of COVID-19? Pulmonary Therapy. 6(2): 169–176. Available at: https://doi.org/10.1007/s41030-020-00118-5.
Mahmudpour, M., et al. (2020). COVID-19 cytokine storm: The anger of inflammation. Cytokine. 133:155151. Available at: https://doi.org/10.1016/j.cyto.2020.155151.
Pirahanchi, Y., and Sharma, S. (2020). Physiology, bradykinin. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537187/
Qadri, F., and Bader, M. Kinin B1 receptors as a therapeutic target for inflammation. Expert Opinion on Therapeutics Targets. 22(1):31–44. https://doi.org/10.1080/14728222.2018.1409724.
Roche, J.A., and Roche, R (2020). A hypothesized role for dysregulated bradykinin signaling in COVID‐19 respiratory complications. FASEB Journal.34(6):7265–9. https://doi.org/10.1096/fj.202000967.
Russell, B., et al. (2020). COVID-19 and treatment with NSAIDs and corticosteroids: should we be limiting their use in the clinical setting? Ecancermedicalscience. 14: 1023. Available from: https://doi.org/ 10.3332/ecancer.2020.1023.
Sharma, J. (2010). Activation of the bradykinin system by angiotensin-converting enzyme inhibitors. European Journal of Inflammation. 8(2):55–61. Available at: https://doi.org/10.1177/1721727X1000800201.
Sodhi, C.P., et al. (2018). Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg 9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. American Journal of Physiology - Lung Cellular and Molecular Physiology. 314(1):L17–31. Available at: https://doi.org/10.1152/ajplung.00498.2016.
van de Veerdonk, F.L., et al. (2020). Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife. 9:e57555. Available at: https://doi.org/10.7554/eLife.57555.
DOI: https://doi.org/10.33024/jikk.v11i7.15551
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
##submission.license.cc.by-nc4.footer##
Pendidikan Dokter Universitas Malahayati Lampung
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.