APLIKASI miRNA SEBAGAI BIOMARKER IDENTIFIKASI PADA INVESTIGASI FORENSIK
Sari
Mikro RNA (miRNA) adalah molekul RNA non-coding yang mengandung 18-24 nukleotida yang sangat terkonservasi dan terlibat dalam pengaturan banyak mekanisme biokimia dalam tubuh manusia. Beberapa penelitian menunjukkan bahwa miRNA dapat bertindak sebagai penanda dalam beragam identifikasi forensik dalam mengidentifikasi penentuan waktu kematian, cairan tubuh, vitalitas luka, dan bidang forensik lainnya. miRNA dalam cairan tubuh dan jaringan diketahui meningkat akibat patofisiologi yang berubah. Studi tentang miRNA pada bidang forensik menjadi hal menarik ditelusuri karena stabilitas dan spesifisitasnya sehingga dapat menjawab secara definitif informasi penting yang diperlukan untuk penyelidikan dan penuntutan, seperti asal cairan sampel yang diperiksa. Karakteristik miRNA sebagai penanda molekuler forensik selaras dengan ketahanannya terhadap degradasi sehingga cocok sebagai penandaendogen. Namun, kurangnya protokol dalam pengujian forensik secara ilmiah dan rendahnya studi pada penanda molekuler ini dalam biologi forensik memerlukan analisis literatur ilmiah mengenai penggunaan forensik miRNA.
Kata Kunci
Teks Lengkap:
PDFReferensi
Alaeddini, R., Walsh, S. J., & Abbas, A. (2010). Forensic implications of genetic analyses from degraded DNA-A review. Forensic Science International: Genetics, 4(3), 148–157. https://doi.org/10.1016/j.fsigen.2009.09.007
Alshehhi, S., & Haddrill, P. R. (2019). Estimating time since deposition using quantification of RNA degradation in body fluid-specific markers. Forensic Science International, 298, 58–63. https://doi.org/10.1016/j.forsciint.2019.02.046
An, J. H., Shin, K. J., Yang, W. I., & Lee, H. Y. (2012). Body fluid identification in forensics. BMB Reports, 45(10), 545–553. https://doi.org/10.5483/BMBRep.2012.45.10.206
Anantharaman, V., Koonin, E. V., & Aravind, L. (2002). Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Research, 30(7), 1427–1464. https://doi.org/10.1093/nar/30.7.1427
Bartel, D. P. (2018). Metazoan MicroRNAs. Cell, 173(1), 20–51. https://doi.org/10.1016/j.cell.2018.03.006
Bartel, D. P., & Chen, C. Z. (2004). Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nature Reviews Genetics, 5(5), 396–400. https://doi.org/10.1038/nrg1328
Bexon, K. J., & Acsfs, M. (2017). Forensic MicroRNA Analysis of Body Fluids Relating to Sexual Assaults.
Brooks, J. W. (2016). Postmortem Changes in Animal Carcasses and Estimation of the Postmortem Interval. Veterinary Pathology, 53(5), 929–940. https://doi.org/10.1177/0300985816629720
Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866. https://doi.org/10.1038/nrc1997
Courts, C., & Madea, B. (2011). Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. Journal of Forensic Sciences, 56(6), 1464–1470. https://doi.org/10.1111/j.1556-4029.2011.01894.x
Dumache, R., Ciocan, V., Muresan, C., Rogobete, A. F., & Enache, A. (2015). Circulating MicroRNAs as Promising Biomarkers in Forensic Body Fluids Identification. Clin Lab. https://doi.org/https://doi.org/10.7754/clin.lab.2015.150207
Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., Watts, L., Booten, S. L., Graham, M., McKay, R., Subramaniam, A., Propp, S., Lollo, B. A., Freier, S., Bennett, C. F., Bhanot, S., & Monia, B. P. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 3(2), 87–98. https://doi.org/10.1016/j.cmet.2006.01.005
Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., Sun, Y., Koo, S., Perera, R. J., Jain, R., Dean, N. M., Freier, S. M., Bennett, C. F., Lollo, B., & Griffey, R. (2004). MicroRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry, 279(50), 52361–52365. https://doi.org/10.1074/jbc.C400438200
Etheridge, A., Lee, I., Hood, L., Galas, D., & Wang, K. (2011). Extracellural microRNA: a new resource of biomarkers. Mutation Research, 717(1–2), 85–90. https://doi.org/10.1016/j.mrfmmm.2011.03.004.Extracellular
Flissak, J. C., Moura, M. O., & Kaufman, P. (2018). Intrapuparial development of sarconesia chlorogaster (Diptera: Calliphoridae) for Postmortem Interval Estimation (PMI). Journal of Medical Entomology, 55(2), 277–284. https://doi.org/10.1093/jme/tjx214
Glynn, C. L. (2020). Potential applications of microRNA profiling to forensic investigations. Rna, 26(1), 1–9. https://doi.org/10.1261/rna.072173.119
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., & Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(Database issue), 140–144. https://doi.org/10.1093/nar/gkj112
Haas, C., Hanson, E., & Ballantyne, J. (2013). mRNA and MicroRNA for Body Fluid Identification. In Encyclopedia of Forensic Sciences: Second Edition (2nd ed.). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-382165-2.00069-6
Hall, A., Sims, L. M., & Ballantyne, J. (2014). Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: Forensic implications. Forensic Science International: Genetics, 8(1), 24–32. https://doi.org/10.1016/j.fsigen.2013.06.010
Hannon, G. J. (2002). RNA interference. Nature, 418(6894), 244–251. https://doi.org/10.1038/418244a
Hanson, E. K., Lubenow, H., & Ballantyne, J. (2009). Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Analytical Biochemistry, 387(2), 303–314. https://doi.org/10.1016/j.ab.2009.01.037
Harfe, B. D. (2005). MicroRNAs in vertebrate development. Current Opinion in Genetics and Development, 15(4), 410–415. https://doi.org/10.1016/j.gde.2005.06.012
Hui, A. B., Shi, W., Boutros, P. C., Miller, N., Pintilie, M., Fyles, T., McCready, D., Wong, D., Gerster, K., Jurisica, I., Penn, L. Z., & Liu, F. F. (2009). Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Laboratory Investigation, 89(5), 597–606. https://doi.org/10.1038/labinvest.2009.12
Hutvagner, G., & Simard, M. J. (2008). Argonaute proteins: Key players in RNA silencing. Nature Reviews Molecular Cell Biology, 9(1), 22–32. https://doi.org/10.1038/nrm2321
Ibrahim, S. F., Ali, M. M., Basyouni, H., Rashed, L. A., Amer, E. A. E., & Abd El-Kareem, D. (2019). Histological and miRNAs postmortem changes in incisional wound. Egyptian Journal of Forensic Sciences, 9(1). https://doi.org/10.1186/s41935-019-0141-7
Khaldi, N., Miras, A., Benali, L., & Botti, K. (2004). Evaluation of Three Rapid Detection Methods for the Forensic Identification of Seminal Fluid in Rape Cases. Journal of Firensic Sciences, 49(4), 749–753. https://doi.org/http://dx.doi.org/10.1520/JFS2003317
Kuai, J., Liu, Y., & Zhang, Y.-W. (2008). A study on the relationship between the degradation of tubulin in cardiac muscle and lung of rat and the postmortem interval. Chinesse Journal of Forensic Medicine. https://www.researchgate.net/journal/Chinese-Journal-of-Forensic-Medicine-1001-5728
Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858. https://doi.org/10.1126/science.1064921
Lau, N. C., Lim, L. P., Weinstein, E. G., & Bartel, D. P. (2001). Lau2001Science. 294(October), 858–862.
Li, W., Zhang, P., Ma, K., & Wan, H. (2010). Estimation of postmortem interval using microRNA and 18S rRNA degradation in rat cardiac muscle. Fa Yi Xue Za Zhi. https://doi.org/http://dx.doi.org/10.3969/j.issn.1004-5619.2010.06.003
Li, Y., Wang, Z., & Hou, Y. (2011). MiR16 as a microRNA marker applied in species identification. Forensic Science International: Genetics Supplement Series, 3(1), e313–e314. https://doi.org/10.1016/j.fsigss.2011.09.019
Liang, Y., Ridzon, D., Wong, L., & Chen, C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics, 8, 1–20. https://doi.org/10.1186/1471-2164-8-166
Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S., & Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of-target mRNAs. Nature, 433(7027), 769–773. https://doi.org/10.1038/nature03315
Lu, Y., Li, Z., Tuo, Y., Liu, L., Li, K., Bian, J., Ma, J., & Chen, L. (2016). Correlation between RNA Degradation Patterns of Rat’s Brain and Early PMI at Different Temperatures. Fa Yi Xue Za Zhi. https://doi.org/https://doi.org/10.3969/j.issn.1004-5619.2016.03.002
Lv, Y. H., Ma, J. L., Pan, H., Zeng, Y., Tao, L., Zhang, H., Li, W. C., Ma, K. J., & Chen, L. (2017). Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Science, Medicine, and Pathology, 13(1), 20–27. https://doi.org/10.1007/s12024-016-9827-4
Lv, Y. H., Ma, J. L., Pan, H., Zhang, H., Li, W. C., Xue, A. M., Wang, H. J., Ma, K. J., & Chen, L. (2016). RNA degradation as described by a mathematical model for postmortem interval determination. Journal of Forensic and Legal Medicine, 44, 43–52. https://doi.org/10.1016/j.jflm.2016.08.015
Lv, Y. H., Ma, K. J., Zhang, H., He, M., Zhang, P., Shen, Y. W., Jiang, N., Ma, D., & Chen, L. (2014). A time course study demonstrating mRNA, microRNA, 18S rRNA, and U6 snRNA changes to estimate PMI in deceased rat’s spleen. Journal of Forensic Sciences, 59(5), 1286–1294. https://doi.org/10.1111/1556-4029.12447
Ma, J., Pan, H., Zeng, Y., Lv, Y., Zhang, H., Xue, A., Jiang, J., Ma, K., & Chen, L. (2015). Exploration of the R code-based mathematical model for PMI estimation using profiling of RNA degradation in rat brain tissue at different temperatures. Forensic Science, Medicine, and Pathology, 11(4), 530–537. https://doi.org/10.1007/s12024-015-9703-7
Manetti, F. (n.d.). LIM Kinases Are AttractiveTargets with Many Macromolecular Partners and Only a Few Small Molecule Regulators. https://doi.org/10.1002/med
Mayes, C., Seashols-Williams, S., & Hughes-Stamm, S. (2018). A capillary electrophoresis method for identifying forensically relevant body fluids using miRNAs. Legal Medicine, 30(October 2017), 1–4. https://doi.org/10.1016/j.legalmed.2017.10.013
Mohammed, A. T., Khalil, S. R., Ali, H. A., & Awad, A. (2018). Validation of mRNA and microRNA profiling as tools in qPCR for estimation of the age of bloodstains. Life Science Journal, August, 7. https://doi.org/10.7537/marslsj150618.01
Myburgh, J., L’Abbé, E. N., Steyn, M., & Becker, P. J. (2013). Estimating the postmortem interval (PMI) using accumulated degree-days (ADD) in a temperate region of South Africa. Forensic Science International, 229(1–3), 165.e1-165.e6. https://doi.org/10.1016/j.forsciint.2013.03.037
Myers, J. R., & Adkins, W. K. (2008). Comparison of modern techniques for saliva screening. Journal of Forensic Sciences, 53(4), 862–867. https://doi.org/10.1111/j.1556-4029.2008.00755.x
O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology, 9(AUG), 1–12. https://doi.org/10.3389/fendo.2018.00402
O`Leary, K. R., & Glynn, C. L. (2018). Investigating the Isolation and Amplification of microRNAs for Forensic Body Fluid Identification. MicroRNA, 7(3), 187–194. https://doi.org/10.2174/2211536607666180430153821
Odriozola, A., Riancho, J. A., De La Vega, R., Agudo, G., García-Blanco, A., De Cos, E., Fernández, F., Sañudo, C., & Zarrabeitia, M. T. (2013). MiRNA analysis in vitreous humor to determine the time of death: A proof-of-concept pilot study. International Journal of Legal Medicine, 127(3), 573–578. https://doi.org/10.1007/s00414-012-0811-6
Pan, H., Zhang, H., Lu, Y., Ma, J., Ma, K., & Chen, L. (2014). Correlation between five RNA markers of rat’s skin and PMI at different temperatures. Fa Yi Xue Za Zhi. https://pubmed.ncbi.nlm.nih.gov/25434083/
Poloz, Y. O., & O’Day, D. H. (2009). Determining time of death: Temperature-dependent postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. International Journal of Legal Medicine, 123(4), 305–314. https://doi.org/10.1007/s00414-009-0343-x
Rajewsky, N. (2006). Microrna target predictions in animals. Nature Genetics, 38(6S), S8–S13. https://doi.org/10.1038/ng1798
Rana, T. M. (2007). Illuminating the silence: Understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology, 8(1), 23–36. https://doi.org/10.1038/nrm2085
Sauer, E., Reinke, A. K., & Courts, C. (2016). Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Science International: Genetics, 22, 89–99. https://doi.org/10.1016/j.fsigen.2016.01.018
Setzer, M., Juusola, J., & Ballantyne, J. (2008). Recovery and stability of RNA in vaginal swabs and blood, semen, and saliva stains. Journal of Forensic Sciences, 53(2), 296–305. https://doi.org/10.1111/j.1556-4029.2007.00652.x
Sirker, M., Fimmers, R., Schneider, P. M., & Gomes, I. (2017). Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Science International: Genetics, 27, 41–49. https://doi.org/10.1016/j.fsigen.2016.11.012
Sood, P., Krek, A., Zavolan, M., Macino, G., & Rajewsky, N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2746–2751. https://doi.org/10.1073/pnas.0511045103
Tanić, M., Yanowski, K., Andrés, E., Gómez-López, G., Socorro, M. R. P., Pisano, D. G., Martinez-Delgado, B., & Benítez, J. (2015). miRNA expression profiling of formalin-fixed paraffin-embedded (FFPE) hereditary breast tumors. Genomics Data, 3, 75–79. https://doi.org/10.1016/j.gdata.2014.11.008
Tavazoie, S. F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., Gerald, W. L., & Massagué, J. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152. https://doi.org/10.1038/nature06487
Teresa, M., & Machado, V. (2015). For peripheral fractions identification: possible forensic applications.
Tobe, S. S., Watson, N., & Daéid, N. N. (2007). Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecular-weight DNA. Journal of Forensic Sciences, 52(1), 102–109. https://doi.org/10.1111/j.1556-4029.2006.00324.x
Tu, C., Du, T., Ye, X., Shao, C., Xie, J., & Shen, Y. (2019). Using miRNAs and circRNAs to estimate PMI in advanced stage. Legal Medicine, 38(March), 51–57. https://doi.org/10.1016/j.legalmed.2019.04.002
van der Meer, D., Uchimoto, M. L., & Williams, G. (2013). Simultaneous analysis of micro-RNA and DNA for determining the body fluid origin of DNA profiles. Journal of Forensic Sciences, 58(4), 967–971. https://doi.org/10.1111/1556-4029.12160
Várallyay, É., & Havelda, Z. (2013). Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Molecular Plant Pathology, 14(6), 567–575. https://doi.org/10.1111/mpp.12029
Vennemann, M., & Koppelkamm, A. (2010). MRNA profiling in forensic genetics I: Possibilities and limitations. Forensic Science International, 203(1–3), 71–75. https://doi.org/10.1016/j.forsciint.2010.07.006
Virkler, K., & Lednev, I. K. (2009). Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Science International, 188(1–3), 1–17. https://doi.org/10.1016/j.forsciint.2009.02.013
Wang, H., Mao, J., Li, Y., Luo, H., Wu, J., Liao, M., Liang, W., & Zhang, L. (2013). 5 miRNA expression analyze in post-mortem interval (PMI) within 48h. Forensic Science International: Genetics Supplement Series, 4(1), e190–e191. https://doi.org/10.1016/j.fsigss.2013.10.098
Wang, Z., Luo, H., Pan, X., Liao, M., & Hou, Y. (2012). A model for data analysis of microRNA expression in forensic body fluid identification. Forensic Science International: Genetics, 6(3), 419–423. https://doi.org/10.1016/j.fsigen.2011.08.008
Wang, Z., Zhang, J., Luo, H., Ye, Y., Yan, J., & Hou, Y. (2013). Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Science International: Genetics, 7(1), 116–123. https://doi.org/10.1016/j.fsigen.2012.07.006
Wang, Z., Zhang, J., Wei, W., Zhou, D., Luo, H., Chen, X., & Hou, Y. (2015). Identification of Saliva Using MicroRNA Biomarkers for Forensic Purpose. Journal of Forensic Sciences, 60(3), 702–706. https://doi.org/10.1111/1556-4029.12730
Watanabe, K., & Akutsu, T. (2020). Evaluation of a co-extraction kit for mRNA, miRNA and DNA methylation-based body fluid identification. Legal Medicine, 42, 101630. https://doi.org/10.1016/j.legalmed.2019.101630
Wegman, D. W., & Krylov, S. N. (2013). Direct miRNA-hybridization assays and their potential in diagnostics. TrAC - Trends in Analytical Chemistry, 44, 121–130. https://doi.org/10.1016/j.trac.2012.10.014
Wilson, S. J., & Christensen, A. M. (2017). A test of the citrate method of PMI estimation from skeletal remains. Forensic Science International, 270, 70–75. https://doi.org/10.1016/j.forsciint.2016.11.026
Wong, L. L., Wang, J., Liew, O. W., Richards, A. M., & Chen, Y. T. (2016). MicroRNA and heart failure. International Journal of Molecular Sciences, 17(4), 1–31. https://doi.org/10.3390/ijms17040502
Zubakov, D., Boersma, A. W. M., Choi, Y., Van Kuijk, P. F., Wiemer, E. A. C., & Kayser, M. (2010). MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. International Journal of Legal Medicine, 124(3), 217–226. https://doi.org/10.1007/s00414-009-0402-3
DOI: https://doi.org/10.33024/jikk.v9i4.8697
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
##submission.license.cc.by-nc4.footer##
Pendidikan Dokter Universitas Malahayati Lampung
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.